Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Dynamic Characteristics of a Mount Combining Viscous Fluid With Air-Spring

2007-05-15
2007-01-2360
A hydraulic excavator cab is mounted on a viscous mount. When the weight of the cab is heavy, the neutral position is depressed. Besides, at a large load, the cab receives compressive repulsion power of oil thereby restricting its damping ability. In addition, it is difficult to obtain an arbitrary damping performance separately. To overcome these problems, which combines the shear force due to viscous fluid with elastic force due to air-spring a mount, was invented. The neutral position of composite mount is adjustable by air-spring according to the weight. And viscous oil is not sealed up. So, viscous oil can flow at a large load. Therefore, it may not experience the repulsion force of oil in spite of a large load. Moreover, the generated elastic force is adjustable according to change of pressure in the air spring, and the generated damping force is adjustable according to change of viscous fluid's viscosity or volume.
Technical Paper

Study on Low Speed Judder of Wave Type Brake Discs for Motorcycles

2006-11-13
2006-32-0026
This study discussed the mechanism of the low speed judder for wave type brake disc developed newly for recent motorcycles. Wavy disc was examined to investigate the effect of wave configurations on the BTV (Brake Torque Variation) behavior. Torque amplitude in braking was compared with respect to the revolution order which represented the multiple number of the number of revolutions. To explain the mechanism at the mode showing largest BTV, the elastic deformation of the pad was analyzed by finite element method concerning geometrical nonlinearity with commercial code. This study found that most crucial BTV appeared on low speed judder was observed at the 3 rd peaks on the revolution order. Test data showed that this crucial BTV was related with the number of waves at the disc periphery, and caused by the indentation of the pad into notched part at disc periphery.
Technical Paper

A Measures Planning Method by Analysis of Contribution of the Vibration Transfer Path

2009-05-19
2009-01-2197
This paper describes a proposal of techniques on Transfer Path Analysis (TPA) to analyze transmission of vibration among the components in a complex structure. This proposal is evolved from the previous one [1] in the dimension which dominates the quality of the analysis in automotive body structure by TPA. The proper coordinate transformation was introduced to resolve the troublesome process on the application of the body structure in the previous proposal. The complications are caused by the treatment with a lot of transfer functions and transmitted forces at the conjunctions that are complexly assembled with many adjacent nodes. Dimension of the analytical region is expanded from two to three in this study. That is, from the cross section of interface of components to the structure itself where the vibration transmits between two components.
Technical Paper

Prediction of Spindle Force Using Measured Road Forces on Rolling Tire

2009-05-19
2009-01-2107
Improvement of vehicle interior noise is desired in recent years in the modern world of the demand of low weight, good fuel economy and offering technical advantages strongly. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We focus on structure-borne noise transferred through the spindle. It is necessary for effort of the effective tire/road noise reduction to predict spindle force excited by tire/road contact. The major issues in predicting spindle forces are to clarify the distribution of road forces and how to input on the simulation model. Therefore, it is important that road forces are measured accurately on the rolling tire. First, the dynamic road forces on the rolling tire are measured by using the tri-axial force sensor directly. In efforts to reduce interior noise due to structure-borne noise, it is necessary to predict spindle forces excited by the tire/road contact.
Technical Paper

Study on Noise Generation Mechanism for Dry Hybrid Type CVT - Influence of Block Motions and Surface Roughness of Pulley on Sound Pressure

2004-03-08
2004-01-0477
In order to reveal the mechanism of noise generation from CVT (Continuously Variable Transmissions) using a dry hybrid V-belt, the power spectrum of sound from a two-pulley CVT system and its variation with respect to rotational speed were measured. The experimental results showed that the frequency of the first peak in the power spectrum of the observed sound linearly increased with increasing the rotational speed of the pulley. The sound frequency of the first peak coincides with the frequency derived from the belt block pitch and the belt speed. Then, sound intensity analyses were conducted to identify noise sources of CVT. The experimental results reveal that unpleasant sound whose frequency is high occurs due to the collision or slip between CVT blocks and the pulley groove at the entrance and the exit of V-groove pulleys. Pulley surface roughness strongly affects the noise level. Additionally, the location of noise source varies due to surface roughness of the pulley groove.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Permanent Deflection of Two-Layered Clutch Plates - - How to Reduce the Deflection of Two-Layered Clutch Plates -

2004-03-08
2004-01-0740
Two-layered clutch plates manufactured by a new process using BMC show a significant deflection. Two methods solving such deflection were alternatively developed in this study. Changing the composition of the clutch plate appeared to be useless while after-curing on deflected clutch plates was effective. Thermal cycles or high pressure for after-cure did not reduce the deflection. However, applying after-cure with a sloped mold reduce the deflection without increasing the disk density.
Technical Paper

Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels

2003-05-19
2003-01-1789
This paper provides new insights on the mechanism of the smokeless diesel combustion with oxygenated fuels, based on a combination of soot kinetic modeling and optical diagnostics. The chemical effects of fuel compositions, including aromatics - paraffins blend, neat oxygenated fuels and oxygenate additives, on sooting equivalence ratio ‘ϕ’ - temperature ‘T’ dependence were numerically examined using a detailed soot kinetic model. To better understand the physical factors affecting soot formation in oxygenated fuel sprays, the effects of injection pressure and ambient gas temperature on the flame lift-off length and relative soot concentration in oxygenated fuel jets were experimentally investigated. The computational results show that the leaner mixture side of soot formation peninsula on the ϕ - T map, rather than the lower temperature one, should be utilized to suppress the formation of PAHs and ultra-fine particles together with the large reduction in particulate mass.
Technical Paper

Application of Transfer Path Analysis (TPA) to a Mechanical Structure with a Variety of Transfer Paths

2016-09-27
2016-01-8101
In a typical mechanical product such as an automobile or construction machinery, it is important to identify deformation modes, for which experiments and analyses can result in significant improvements. It is also important to consider how to improve the structure with high rigidity by using a technique such as the strain energy method in conventional design and development. However, the abovementioned method often generates conflicting results with regard to weight saving and cost reduction of development requirements. Transfer path analysis (TPA) using the finite element method (FEM) is an effective way to reduce noise and vibration in the automobile with respect to these issues. TPA can reveal the transfer path from the input to the response of the output point and the contribution of the path, and to efficiently consider improved responses.
Technical Paper

Construction of Sound Source Model for Diesel Engine Using New Method for Selecting Optimal Field Points in Inverse-Numerical Acoustic Analysis

2017-06-05
2017-01-1871
This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and its application to construction of a sound source model for diesel engines. INA identifies the surface vibration of a sound source by using acoustic transfer functions and actual sound pressures measured at field points located near the sound source. When measuring sound pressures with INA, it is necessary to determine the field point arrangement. Increased field points leads to longer test and analysis time. Therefore, guidelines for selecting the field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points and proposed a new guideline for optimal field point selection in our past study. In that study, we verified the effectiveness of this guideline using a simple plate model.
Technical Paper

Power Transmitting Mechanisms of CVT Using a Metal V-Belt and Load Distribution in the Steel Ring

1998-02-23
980824
An advanced numerical model is proposed to analyze the power transmitting mechanisms of a CVT using a metal V-belt. By using the present model, forces acting on the belt are well estimated not only at steady states but also during transitional states where the speed ratio is changing. The numerical results show that blocks are in compression in both strands when the speed ratio is rapidly shifted. A complementary model is also developed to analyze the load distribution among bands which form the ring. The load distribution in the ring is governed by the difference in coefficients of friction among elements.
Technical Paper

Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays

2003-03-03
2003-01-0073
Considering the bell-shaped temperature dependence of soot particle formation, the control of flame temperature has a possibility to drastically suppress of soot formation. Furthermore, oxygenated fuels are very effective on soot reduction, and the use of these kinds of fuels has a potentiality for smokeless diesel combustion. In this paper, the effects of flame lift-off and flame temperature on soot formation in oxygenated fuel sprays were experimentally investigated using a constant volume combustion vessel which simulated diesel engine conditions. The diffusion flame lift-off length was measured in order to estimate the amount of the oxygen entrained upstream of the flame lift-off length in the fuel jet. This was determined from time-averaged OH chemiluminescence imaging technique. Also, the flame temperature and soot concentration were simultaneously evaluated by means of two-color method.
Technical Paper

New Concept on Lower Exhaust Emission of Diesel Engine

1995-09-01
952062
One of countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure, and its demerit is increase in NOx, although soot is decreasing. Then, authors propose the new concept on the simultaneous reduction of NOx and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO2 gas dissolved. Flash boiling facilitates the distinguished atomization of fuel oil and CO2 gas contributes to realizes the internal EGR during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO2 gas dissolved is described in this paper, as a first step.
Technical Paper

Characterization of Fuel Vapor Concentration Inside a Flash Boiling Spray

1997-02-24
970871
For current passenger vehicles, multi-point injection (MPI) systems are extensively employed for gasoline engines due to ease of control and rapid response. In these systems, the pressure within the intake manifold to which the injectors are installed can fall below the saturated vapor pressure of some hydrocarbon components present in the fuel. Such a condition leads to an atomization process in which flash boiling occurs. In the present work, the atomization process under flash boiling conditions has been characterized both experimentally and theoretically. The experimental investigation has been carried out with a spray test facility consisting of a variable pressure chamber equipped with a pintle type fuel nozzle. Infrared Extinction/Scattering (IRES) is utilized to provide temporal and spatially resolved distribution of the fuel vapor concentration within the spray.
Technical Paper

Transient Characteristics of Fuel Atomization and Droplet Size Distribution in Diesel Fuel Spray

1983-02-01
830449
The purposes of this study are to clarify the atomization mechanism, the change over time in droplet size distribution, and the change in spray characteristics dependent on back pressure on diesel fuel spray. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking direct microscopic photographs varying the moment of exposure, the back pressure, and the ambient density. The results show that the mechanism of spray atomization is divided into 4 processes, and spatial distribution of breakup droplets and a droplet volume rate are assessed for the whole spray region. Total and local distributions of droplet size are expressed by empirical equations as a function of time elapsed from the moment of injection. It is confirmed that the uniformity of the distribution, Sauter mean diameter of droplets, and droplet production rate change with time. Mean droplet diameter is further described in relation to the pressure drop and the ambient density.
Technical Paper

Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine

1999-03-01
1999-01-0798
In SI engines with port injection system, the injected fuel spray adheres surely on the port wall and the inlet valve, consequently, the spray-wall interaction process leads to the generation of unburned hydrocarbons and uncontrollable mixture formation. This paper deals with the fuel mixture preparation process including basic research on characteristics of the wall-wetted fuel film on a flat wall inside a constant volume vessel. In the experiments, iso-octane mixed with biacetyl as a tracer dopant was injected through a pintle type injector against a flat glass wall under the ambient conditions of atmospheric pressure and room temperature. The thickness of the adhered fuel film on the wall was quantitatively measured by using laser induced fluorescence (LIF) technique, which provides 2-D distribution information with high special resolution as a function of the injection duration, the impingement distance from the injector to the wall, and the impingement angle against the wall.
Technical Paper

Power Transmitting Mechanism of a Dry Hybrid V-Belt for a CVT - Advanced Numerical Model Considering Block Tilting and Pulley Deformation -

1999-03-01
1999-01-0751
A new discrete model was developed in order to analyze the power transmitting mechanisms of a dry hybrid V-belt CVT not only at steady states but also at transitional states where the speed ratio was changing. Block tilting in the pulley was considered in the advanced numerical model as well as pulley deformation due to pulley thrust. The validity of the present model was well confirmed by comparing the calculated results on transmitting and normal forces with the former experimental results. The calculated results showed that both block tilting and pulley deformation meaningfully affected the pulley thrust ratio between the driving and the driven pulleys.
Technical Paper

Study on Multicomponent Fuel Spray with High Injection Pressure

2019-12-19
2019-01-2282
In previous study, the model for flash-boiling spray of multicomponent fuel was constructed and was implemented into KIVA code. This model considered the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets. These numerical results using this model were compared with experimental data which were obtained in the previous study using a constant volume vessel. The spray characteristics from numerical simulation qualitatively showed good agreement with the experimental results. Especially, it was confirmed from both the numerical and experimental data that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets. However, in this previous study, injection pressure was very low (up to 15 MPa), and the spray characteristics of high pressure injection could not be analyzed.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Change of Relative Local Velocity in Pulley Groove at Sliding between Belt and Pulleys for Metal Pushing V-Belt Type CVT

2023-10-24
2023-01-1851
The objective of this study was to investigate the change of relative local velocity in each pulley groove at sliding between the belt and pulleys for a metal-pushing V-belt type CVT where micro elastic slips were inevitably accompanied to transmit power, while the transmissions were widely adopted to provide comfortable driving by continuously automatically adjusting the speed ratio. Local changes of wrapping radial position and velocity of the belt in each pulley groove of the CVT were simultaneously measured by a potentiometer with a spinning roller in the experiments. The mechanical power generated by the AC motor was transmitted through the CVT unit from the driving axis to the driven axis as usual under practical conditions while the speed ratio was set to 1.0. Pulley clamping force was applied by oil pressure.
X