Refine Your Search

Topic

Author

Search Results

Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
Journal Article

Methodology for Solving Contact Problem during Riveting Process

2011-10-18
2011-01-2582
The paper describes the methodology of contact problem solving that is used in specialized software code aimed at simulation of aircraft assembly process. For considered class of problems it is possible to radically reduce the number of unknowns without loss of accuracy. The results of validation of developed code against physical experiments and commercial FEM codes are also given.
Technical Paper

Improved Simulation of Local Necks in Quick Plastic Forming

2008-04-14
2008-01-1441
Two alternative finite element formulations are described which consider the influence of normal stress components on sheet deformations in Quick Plastic Forming [1]. The new formulations, single field bricks and multi-field shells, were implemented in the forming simulation program PAM-STAMP [2] using a non-linear viscoelastic constitutive relation [3,4]. Simulations of two industrial components indicate that both new elements simulate local necking more accurately than the standard shells which ignore normal stresses. The multi-field shells require slightly more calculation time than the standard shells and significantly less than equivalent brick models.
Technical Paper

A Fast and Fully Automated Cartesian Meshing Solution for Dirty CAD Geometries

2008-12-02
2008-01-2998
The most time-consuming step in an external aerodynamics or underhood CFD process is that of generating a usable mesh from CAD data. Conventional mesh generators require a water-tight surface mesh before they can generate the volume mesh. Typical CAD surface data available for mesh generation is far from satisfactory for volume mesh creation: no node-to-node matching between mating parts, minute gaps, overlapping surfaces, overlapping parts, etc. To clean up this kind of data to a level that can be used for volume mesh creation requires a lot of manual work that could take a couple of weeks or more to accomplish. This paper presents a fast and fully automated, Cartesian cell dominated projected mesh generation algorithm used in CFD-VisCART that eliminates the need for CAD data cleaning, thus shaving off weeks worth of time off the design cycle.
Technical Paper

A Study on the Distortion Characteristic Due to Spot Welding of Body structure Assembly for Passenger Car

2002-07-09
2002-01-2022
In this paper, the distortion analysis in spot welded area of car body - front side member, it is found out that the optimum condition for panel assembly is closely related to the welding sequence, location of clamping system, number, shape and welding force. The distortion resulting from welding sequence is minimized starting from the surroundings of the clamping system and in the way that the value of the welding force is from large to small. The MCP is determined from the positions inducing the minimum distortion in panel through calculating the deformation and reacting force of the panel. The welding force originating from the manufacturing tolerance of assembly is a critical design factor determining the welding sequence and the clamping system that yield minimum distortion in spot welding of body panel.
Technical Paper

Vibration Assisted Drilling of Aerospace Materials

2016-09-27
2016-01-2136
Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

2017-09-19
2017-01-2085
The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

IT Security Management of Aircraft in Operation: A Manufacturer's View

2011-10-18
2011-01-2717
Over the last few years, IT systems have quickly found their way onboard aircrafts, driven by the continuous pursuit of improved safety and efficiency in aircraft operation, but also in an attempt to provide the ultimate in-flight experience for passengers. Along with IT systems and communication links came IT security as a new factor in the equation when evaluating and monitoring the operational risk that needs to be managed during the operation of the aircraft. This is mainly due to the fact that security deficiencies can cause services to be unavailable, or even worse, to be exploited by intentional attacks or inadvertent actions. Aircraft manufacturers needed to develop new processes and had to get organized accordingly in order to efficiently and effectively address these new risks.
Technical Paper

Versatile NC Part Programs for Automated Fastening Systems in Pulsed Assembly Lines

2011-10-18
2011-01-2771
Pulsed assembly lines are providing an enormous potential to the aviation industry, especially in terms of reduced lead times, optimized asset utilization and an increased ratio of value adding processes. As it comes near to flow manufacturing the realization of a pulsed assembly line leads to special requirements to the use of NC programs for automated drilling and fastening processes, especially as a result of the unique part positions upon each pulse and concerning the balancing of the work onto several serialized fastening machines. The key to those challenges are versatile NC part programs that eliminate the need for any additionally written NC programs by self-adapting onto the concrete situation within the working areas of the production line.
Technical Paper

Rivetless Nutplate Developments for Aerospace Applications

2011-10-18
2011-01-2756
Within this paper, the AIRBUS approach on the development of rivetless nutplates as an alternative to riveted anchor nuts is described. Within the frame of a wider analysis, it was identified that currently used riveted anchor nut elements does have disadvantages with negative impact on an optimized cost-efficient and lead-time driven design and manufacturing environment. Rivetless nutplate systems provide some features that are potentially capable to mitigate some of the identified disadvantages of riveted elements. The paper covers the key requirements and objectives that were put in place in order to identify the most beneficial solution(s). It furthermore contains detailed information on the rivetless nutplate systems selected by AIRBUS and the justification for the selection that was made.
Technical Paper

Orbital Drilling Machine for One Way Assembly in Hard Materials

2011-10-18
2011-01-2745
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we simplify specific jigs used to maintain parts during drilling operations? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons.
Technical Paper

Reducing Energy Use in Aircraft Component Manufacture - Applying Best Practice in Sustainable Manufacturing

2011-10-18
2011-01-2739
Rising energy costs and increased regulation in recent years have caused industrialists to investigate how to apply ‘energy efficiency’ to their manufacturing operations. As well as reducing operating costs, the benefits of a ‘green’ image as a market differentiator are beginning to be realised. The literature describes the successful implementation of a variety of approaches to energy reduction, with particular focus on energy intensive industries (such as foundries) and on improvements to building services (such as lighting). However, a systematic approach to applying sustainable practices to the manufacturing processes involved in the production of high value products, such as aircraft, is noticeably absent. This paper describes how a number of sustainable manufacturing approaches have been combined, enhanced and applied to the shop floor of a manufacturing facility in the UK responsible for the production of large component assemblies for the aerospace industry.
Technical Paper

Force Controlled Assembly of a Compliant Rib

2011-10-18
2011-01-2734
Automation in aerospace industry is often in the form of dedicated solutions and focused on processes like drilling, riveting etc. The common industrial robot has due to limitations in positional accuracy and stiffness often been unsuitable for aerospace manufacturing. One major cost driver in aircraft manufacturing is manual assembly and the bespoke tooling needed. Assembly tasks frequently involve setting relations between parts rather than a global need for accuracy. This makes assembly a suitable process for the use of force control. With force control a robot equipped with needed software and hardware, searches for desired force rather than for a position. To test the usefulness of force control for aircraft assembly an experimental case aligning a compliant rib to multiple surfaces was designed and executed. The system used consisted of a standard ABB robot and an open controller and the assembly sequence was made up of several steps in order to achieve final position.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Orbital Drilling

2011-10-18
2011-01-2533
During mechanical assembly, individual parts are joined by different types of fasteners which are commonly to be installed into tightly tolerated holes. Drilling of widely used modern materials like CFRP and titanium leads to challenges in terms of tool and process development. A significant challenge is one step drilling in assemblies made from mixed material stacks. It results in deviating hole diameters making the additional reaming operation essential.”But also drilling of thick single material stacks imposes difficulties in terms of hole tolerance, chip extraction, heat accumulation and lubrication issues, leading to the necessity of drilling in several steps to achieve the required hole quality and integrity. During orbital drilling the drive spindle rotates eccentrically in addition to tool rotation and feed movement, leading to a circular path of the cutting tool. Orbital drilling can offer advantages compared with conventional drilling and reaming.
Technical Paper

Interface Management in Wing-Box Assembly

2011-10-18
2011-01-2640
Gaps between structural components have been a common problem since the start of aviation. This has usually been caused by the manufacturing tolerances of the components in question not being sufficiently tight. An example where such issues arise is in the assembly of a wing skin to rib feet to form an aircraft wing-box, where it is commonly found that, whilst some rib feet are in contact with the wing skin, others are spaced from it. Yet a strong connection between the wing skin and the rib feet is important to maintain the structural strength of the wing-box. To eliminate the existing gaps, the current approach, used in many manufacturing production lines, involves filling in the gaps to the required shape by applying liquid or solid shim to the rib feet. This is a relatively long and expensive process. To overcome these current inherent difficulties in interface management, a method to eliminate the shimming requirement between component interfaces is presented.
X