Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Spray Analysis of the PFAMEN Injector

In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The expected advantages of the so-called Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN) injector are lower soot- and CO2 emissions. However, from previous in-house measurements, it has been concluded that the emissions of the porous injector are still not satisfactory. Roughly, this may have multiple reasons. The first one is that the spray distribution is not good enough, the second one is that the droplet sizing is too big due to the lack of droplet breakup. Furthermore air entrainment into the fuel jets might be insufficient. All reasons lead to fuel rich zones and associated soot formation.
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
Technical Paper

Modeling Fuel Spray Auto-ignition using the FGM Approach: Effect of Tabulation Method

The Flamelet Generated Manifold (FGM) method is a promising technique in engine combustion modeling to include tabulated chemistry. Different methodologies can be used for the generation of the manifold. Two approaches, based on igniting counterflow diffusion flamelets (ICDF) and homogeneous reactors (HR) are implemented and compared with Engine Combustion Network (ECN) experimental database for the baseline n-heptane case. Before analyzing the combustion results, the spray model is optimized after performing a sensitivity study with respect to turbulence models, cell sizes and time steps. The standard High Reynolds (Re) k-ε model leads to the best match of all turbulence models with the experimental data. For the convergence of the mixture fraction field an appropriate cell size is found to be smaller than that for an adequate spray penetration length which appears to be less influenced by the cell size.
Technical Paper

Modeling of Conventional and Early Diesel Injection Combustion Characteristics using FGM Approach

The wide range of diesel engine operating conditions demand for a robust combustion model to account for inherent changes. In this work, the Flamelet Generate Manifold (FGM) approach is applied, in STAR-CD framework, to simulate the conventional injection- and early injection-timing (PCCI like) combustion regimes. Igniting Counter flow Diffusion Flamelets (ICDFs) and Homogeneous Reactors (HRs) are used to tabulate chemistry for conventional and PCCI combustion modes, respectively. The validation of the models with experimental data shows that the above consideration of chemistry tabulation results in accurate ignition delay predictions. The study reveals that a moderate amount of 5 different pressure levels is necessary to include in the FGM database to capture the ignition delay in both combustion regimes.