Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Map of an Exhaust Manifold for a Transient Dyno Test Schedule: Development and Test Data Correlation

2018-04-03
2018-01-0126
In an Internal Combustion (IC) Engine, the exhaust manifold has the primary function of channeling products of combustion from cylinder head runners to the emissions system through a collector. Exhaust manifolds must endure severe thermal loads and high strain caused by channeling extremely hot gases and fastener loads, respectively. The combination of these two loads can lead to Thermomechanical Fatigue (TMF) failures after repeated operational cycles if they are not assessed and addressed adequately during the design process. Therefore, it is vital to have a methodology in place to evaluate the life of an engine component (such as the exhaust manifold) using a TMF damage prediction model. To accomplish this, spatial temperature prediction and maximum value attained, as well as temporal distribution, are the most important input conditions.
Technical Paper

Development of a Robust AIS Parametric Model for V8 Engines Using Design for Six Sigma Approach

2018-04-03
2018-01-0140
The automotive Air Induction System (AIS) is an important part of the engine systems which delivers the air to the engine. A well-designed AIS should have low flow restriction and radiates a good quality sound at the snorkel. The GT-Power simulation tool has been widely utilized to evaluate the snorkel noise in industry. In Fiat Chrysler Automobiles, the simulation method enhanced with Design For Six Sigma (DFSS) approach has been developed and implemented in AIS development to meet the functional requirements. The development work included different types of DFSS projects such as identifying new concept, robust optimization and robust assessment etc. In this paper, the work of a robust optimization project is presented on developing an AIS parametric model to achieve optimized snorkel noise performance for a V8 engine. First, the theory of AIS acoustic modeling using GT-power and DFSS robust optimization using Taguchi’s parameter design method are described.
Technical Paper

eFlite Dedicated Hybrid Transmission for Chrysler Pacifica

2018-04-03
2018-01-0396
Electrified powertrains will play a growing role in meeting global fuel consumption and CO2 requirements. In support of this, FCA US has developed its first dedicated hybrid transmission (the eFlite® transmission), used in the Chrysler Pacifica Hybrid. The Chrysler Pacifica is the industry’s first electrified minivan. [2] The new eFlite hybrid transmission architecture optimizes performance, fuel economy, mass, packaging and NVH. The transmission is an electrically variable FWD transaxle with an input split configuration and incorporates two electric motors, both capable of driving in EV mode. The lubrication and cooling system makes use of two pumps, one electrically operated and one mechanically driven. The Chrysler Pacifica has a 16kWh lithium ion battery and a 3.6-liter Pentastar® engine which offers total system power of 260 hp with 84 MPGe, 33 miles of all electric range and 566 miles total driving range. [2] This paper’s focus is on the eFlite transmission.
Technical Paper

A Physics Based Thermal Management Model for PHEV Battery Systems

2018-04-03
2018-01-0080
The demand for vehicles with electrified powertrain systems is increasing due to government regulations on fuel economy. The battery systems in a PHEV (Plug-in Hybrid-electric Vehicle) have achieved tremendous efficiency over past few years. The system has become more delicate and complex in architecture which requires sophisticated thermal management. Primary reason behind this is to ensure effective cooling of the cells. Hence the current work has emphasized on developing a “Physics based” thermal management modeling framework for a typical battery system. In this work the thermal energy conservation has been analyzed thoroughly in order to develop necessary governing equations for the system. Since cooling is merely a complex process in HEV battery systems, the underlying mechanics has been investigated using the current model. The framework was kept generic so that it can be applied with various architectures. In this paper the process has been standardized in this context.
Technical Paper

Optimization of Center Console Duct Using Robust Assessment Methodology

2018-04-03
2018-01-0072
The thermal comfort for the passenger inside the cabin is maintained by the HVAC system. To ensure a comfort for the 2nd row passengers in the cabin, it is very essential to design an efficient HVAC and rear console duct system which can deliver sufficient airflow with less pressure drop. The primary focus of the study is to assess existing airflow of the center console duct using CFD and propose improvement in its duct shape to meet the passenger comfort sitting in the rear seat. In this study, the vehicle cabin model, HVAC system and duct design was modeled using the design software UG. To analyze and estimate the behavior of the air flow of the system, a steady state simulation was performed using STAR CCM CFD software. The performance of the console duct system is judged by parameters like distribution of airflow, velocity at console duct outlet, pressure drop through the duct and the uniformity of the air flow at the passenger locations.
Technical Paper

HVAC System Bench Test Analysis for TXV Tuning

2018-04-03
2018-01-0070
In today’s automotive industry, the A/C (Air-conditioning) system is emerging into a high level of technological growth to provide quick cooling, warm up and maintaining the air quality of the cabin during all-weather conditions. In HVAC system, TXV plays vital role by separating high side to low side of vapor compression refrigeration system. It also regulates the amount of refrigerant flow to the evaporator based on A/C system load. The HVAC system bench laboratory conducts the test at different system load conditions to evaluate the outputs from tests during initial development stage to select the right TXV in terms of capacity and Superheat set point for a given system. This process is critical in HVAC developmental activity, since mule cars will be equipped with selected TXV for initial assessment of the system performance.
Technical Paper

A Comprehensive Approach for Estimation of Automotive Component Life due to Thermal Effects

2018-05-30
2018-37-0019
Due to stringent environmental requirements, the vehicle under-hood and underbody temperatures have been steadily increasing. The increased temperatures affect components life and therefore, more thermal protection measures may be necessary. In this paper, we present an algorithm for estimation of automotive component life due to thermal effects through the vehicle life. Traditional approaches consider only the maximum temperature that a component will experience during severe driving maneuvers. However, that approach does not consider the time duration or frequency of exposure to temperature. We have envisioned a more realistic and science based approach to estimate component life based on vehicle duty cycles, component temperature profile, frequency and characteristics of material thermal degradation. In the proposed algorithm, a transient thermal analysis model provides the exhaust gas and exhaust surface temperatures for all exhaust system segments, and for any driving scenario.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Estimates of the Convective Heat-Transfer Coefficients for Under-Hood and Under-Body Components

2019-04-02
2019-01-0149
In this paper we investigate the application of time constant to estimate the external heat transfer coefficient (h) around specific vehicle components. Using this approach, a test sample in the form of a steel plate is placed around the component of interest. A step change is applied to air temperature surrounding the sample. The response of the sample temperature can be analyzed and the heat transfer coefficient can therefore be calculated. Several test samples were installed at several locations in the vehicle under-hood and underbody. A series of vehicle tests were designed to measure the time constant around each component at various vehicle speeds. A correlation between estimated heat transfer coefficients and vehicle speed was generated. The developed correlations and the measured component ambient temperatures can be readily used as input for thermal simulation tools. This approach can be very helpful whenever CFD resources may not be available.
Technical Paper

Application of Simplified Load Path Models for BIW Development

2019-04-02
2019-01-0614
Simplified load path models (SLMs) of the body in white (BIW) are an important tool in the body structure design process providing a highly flexible, idealized concept model to explore the design space through load path evaluation, material selection, and section optimization with rapid turnaround. In partnership with Altair Engineering, the C123 process was used to create and optimize SLMs for BIW models at FCA US LLC. These models help structures engineers to develop efficient load paths, sections, and joints for improved NVH as ultra-high-strength steels enable thinner gauges throughout the body structure. A few key differences in the SLM modeling method are contrasted to previous simplified BIW modeling methods. One such example is the parameterization of cross sections through response surface models rather than using contemporary finite element descriptions of arbitrary cross sections.
Technical Paper

Integrating a Proactive Quality Control Concept into Machining Operation of a Crankshaft Manufacturing Process

2019-04-02
2019-01-0507
Competition in the manufacturing industry is ever increasingly intense. Manufacturing organizations that want to grow and prosper must embrace a discipline of constant improvement. Their engineering departments are tasked with improving existing manufacturing processes in terms of quality and throughput, which is vital to competing on a global scale. Manufacturers strive to utilize technologies to extract efficiencies from their existing processes. Reducing scrap and rework is the paramount goal in increasing a processes’ efficiency. The foundation of this study is to analyze a production line to determine the quality status throughout the manufacturing process. The intention is to react to process instability before the production becomes non-compliant (scrap/rework) which will significantly improve productivity.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

New Half Shaft Bench Test Methodology for NVH Characterization

2019-06-05
2019-01-1558
The main purpose of this paper is to develop a reliable bench test to understand the vibratory behavior of the half shafts under applied torque comparable to an idle condition. In some cases, the half shaft path is a major factor influencing the idle vibration in the vehicle. At idle condition vehicle vibrations are caused by engine excitation and then they pass through different paths to the body structure. Half shaft manufacturers generally characterize shaft joints for their frictional behavior and typically there is no data for vibration characteristics of the half shaft under idle conditions. However, for predictive risk management, the vibratory behavior of the half shaft needs to be identified. This can be achieved from measured frequency response functions under preloaded test conditions.
Technical Paper

Automotive HVAC Dual Unit System Cool-Down Optimization Using a DFSS Approach

2019-04-02
2019-01-0892
Automotive AC systems are typically either single unit or dual unit systems, while the dual unit systems have an additional rear evaporator. The refrigerant evaporates inside these heat exchangers by taking heat and condensing the moisture from the recirculated or fresh air that is being pushed into the car cabin by air blowers. This incoming cold air in turn brings the cabin temperature and humidity to a level that is comfortable for the passengers. These HVAC units have their own thermal expansion valve to set the refrigerant flow, but both are connected to the main AC refrigerant loop. The airflows, however, are controlled independently for front and rear unit that can affect the temperature and amount of air coming into the cabin from each location and consequently the overall cabin cool-down performance.
Technical Paper

Efficiency Evaluation of Lower Viscosity ATF in a Planetary Automatic Transmission for Improved Fuel Economy

2019-04-02
2019-01-1296
With continued industry focus on reducing parasitic transmission and driveline losses, detailed studies are required to quantify potential enablers to improve vehicle fuel economy. Investigations were undertaken to understand the influence of lower viscosity Automatic Transmission Fluids (ATF) on transmission efficiency as compared with conventional fluids. The objectives of this study were to quantify the losses of lower viscosity ATF as compared with conventional ATF, and to understand the influence of ATF properties including viscosities, base oil types, and additive packages on fuel efficiency. The transmission efficiency investigations were conducted on a test bench following a vehicle-based break-in of the transmission using a prescribed drive cycle on a chassis dynamometer. At low temperature, the lower viscosity ATF showed a clear advantage over the conventional ATF in both spin loss and loaded efficiency evaluations.
Technical Paper

Use of Active Vibration Control to Improve Vehicle Refinement while Expanding the Usable Range of Cylinder Deactivation

2019-06-05
2019-01-1571
Cylinder deactivation has been in use for several years resulting in a sizable fuel economy advantage for V8-powered vehicles. The size of the fuel-economy benefit, compared to the full potential possible, is often limited due to the amount of usable torque available in four-cylinder-mode being capped by Noise, Vibration, and Harshness (NVH) sensitivities of various rear-wheel-drive vehicle architectures. This paper describes the application and optimization of active vibration absorbers as a system to attenuate vibration through several paths from the powertrain-driveline into the car body. The use of this strategy for attenuating vibration at strategic points is shown to diminish the need for reducing the powertrain source amplitude. This paper describes the process by which the strategic application of these devices is developed in order to achieve the increased usage of the most fuel efficient reduced-cylinder-count engine-operating-points.
Technical Paper

New Method for Decoupling the Powertrain Roll Mode to Improve Idle Vibration

2019-06-05
2019-01-1588
Modern engines have high torque outputs and have low RPM due to increased demand for fuel efficiency. Vibrations caused by such engines have to be mitigated. Decoupling the roll mode from the remaining five rigid body modes results in a response which is predominantly about the torque roll axis (TRA) and helps reduce vibrations. Therefore, placing the mounts on the TRA early in the design phase is crucial. Best NVH performance can be obtained by optimizing the powertrain mount parameters viz; Position, Orientation and Stiffness. Many times, packaging restricts the mounts to be placed about the TRA resulting in degradation in NVH performance. Assuming that the line through the engine mount (Body side) centers is the desired TRA, we propose a novel method of shifting the TRA by adding mass modifying the powertrain inertia such that the new TRA is parallel to and on top to the desired TRA. This in turn will decouple the roll mode and reduce vibrations.
Technical Paper

Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming

2018-04-03
2018-01-0810
Light-weighting vehicles cause an increase in Aluminum Alloy stamping processes in the Automotive Industry. Surface finish and lubricants of aluminum alloy (AA) sheet play an important role in the deep drawing processes as they can affect the friction condition between the die and the sheet. This paper aims to develop a reliable and practical laboratory test method to experimentally investigate the influence of surface finish, lubricant conditions, draw-bead clearances and pulling speed on the frictional sliding behavior of AA 6XXX sheet metal. A new double-beads draw-bead-simulator (DBS) system was used to conduct the simulated test to determine the frictional behavior of an aluminium alloy with three surface lubricant conditions: mill finish (MF) with oil lube, electric discharge texture (EDT) finish with oil lube and mill finish (MF) with dry lube (DL).
Technical Paper

A Comprehensive Study of Hole Punching Force for AHSS

2018-04-03
2018-01-0802
The elevated strength of advanced high strength steels (AHSS) leads to enormous challenges for the sheet metal processing, one of which is hole punching operation. The total tonnage must be estimated at each trimming stage to ensure successful cutting and protect the press machine. This paper presents the effects of hole punch configurations on the punching force with the consideration of punch shape, cutting clearance and material grade. The hole punching experiments were performed with DP590, DP980, DP1180 and one mild steel as a reference. The punching force coefficient is defined and presents a negative correlation with the material strength based on the experimental data. Surface quality was examined to analyze the damage accumulation during the punching process. The cutting mechanisms with various punch shapes were revealed through an extensive finite element simulation study.
Technical Paper

Effects of Punch Shapes and Cutting Configurations on the Dimensional Accuracy of Punched Holes on an AHSS Sheet

2018-04-03
2018-01-0800
Dimensional accuracy of punched hole is an essential consideration for high-quality sheet metal forming. An out-of-shape hole can give rise to manufacturing issues in the subsequent production processes thus inducing quality defects on a vehicle body. To understand the effects of punch shapes and cutting configurations on punched hole diameter deviations, a systematical experimental study was conducted for multiple types of AHSS (DP1180, DP980, DP590) and one mild steel. Flat, conical and rooftop punches were tested respectively with three cutting clearances on each material. The measurement results indicated different diameter enlargement modes based on the punch profiles, and dimensional discrepancies were found to be more significant with the stronger materials and higher cutting clearance. To uncover the mechanism of punched hole enlargement, a series of finite element simulations were established for numerical investigation.
X