Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
Technical Paper

Shifter Cable Vibration Transfer and Kinematic Simulation: Case Study

2005-05-16
2005-01-2379
The shifter lever is one of the main customer contact points in the vehicle. Vibration levels at this contact point have an effect on perceived vehicle quality. For this reason, shifter lever vibration and the corresponding transfer paths from the transmission to the shifter lever need to be considered during vehicle development. On a recent program, experimental measurements identified the shifter cable to be a significant transfer path for shifter lever vibration. An integrated Computer Aided Engineering (CAE) and experimental effort was undertaken to model and optimize the shifter lever and cable assembly for reduced vibration. Experimental data was used to better understand the vibration phenomenon, set boundary conditions for the CAE modeling, and for correlation. The CAE model contains the shifter lever assembly and a detailed cable assembly model.
X