Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Aspects of Powertrain Noise with Special Emphasis on Impulsive Noise

2007-05-15
2007-01-2411
NVH refinement is an important aspect of the powertrain development process. Powertrain NVH refinement is influenced by overall sound levels as well as sound quality. The sound quality and hence the level of powertrain NVH refinement can be negatively affected by the presence of excessive impulsive noise. This paper describes a process used to develop an understanding of impulsive powertrain noise. The paper begins with an introductory discussion of various sources of impulsive noise in an automotive powertrain. Following this, the paper outlines a process for identifying the source of the impulsive powertrain noise using examples from case studies. The remainder of the paper focuses on certain examples of impulsive noise such as Diesel knocking noise, injector ticking, impulsive cranktrain noise, and gear rattle. For these examples, the development of key objective metrics, optimization measures, and improvement potential are examined.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

Cold Start Engine Clatter Noise Evaluations

2005-05-16
2005-01-2455
Internal combustion engine noise is primarily composed of combustion and mechanical noise shares. Mechanical noise contributions in engines have increased relevance at low load conditions when combustion related noise is not significant. Current literature on mechanical noise in engines includes: piston pin ticking, piston secondary motion, and valvetrain impacts. A mechanical noise source from excitation of piston tertiary motion is described here in the form of a case study on an engine exhibiting a cold start “clatter” noise. Targeted experimental measurements were initially used to rule out potential mechanisms such as impacts resulting from piston pin ticking and piston secondary motion. Experimental modification studies and piston load and kinematics modeling led to discovery of instability of the piston which is understood to excite tertiary motion of the piston and result in impulsive “clatter” noise under certain low load/speed conditions.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
Technical Paper

Aspects of Powerplant Integration With Emphasis on Mount and Bracket Optimization

2003-05-05
2003-01-1468
Optimization of the interface between the powerplant and vehicle frame/body is critical to obtaining superior interior structureborne noise and vibration characteristics in the vehicle. This paper demonstrates the combination of new and existing simulation/experimental methodologies for powerplant integration, including results from case studies. Multi-body simulation based methodologies are used to optimize the location, number, and type of powerplant mounts on a vehicle, taking into account the input forcing from the engine and frequency-dependent mount properties. Upon obtaining the first prototype vehicle, a procedure to evaluate the effectiveness of the powerplant mounts using a vibrational power flow technique, is described. The influence of mount bracket resonances on interior vehicle sound is shown and a new procedure to optimize mount brackets, provided.
X