Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

Future Potential and Development Methods for High Output Turbocharged Direct Injected Gasoline Engines

With rising gasoline prices in the US the need for increasingly fuel efficient powertrain concepts has never been more critical. Evaluation of the market on the other hand shows that the vehicle-buying consumer is unwilling to compromise engine power output for this needed fuel efficiency. Boosted, direct-injected gasoline engines with high specific output and low end torque seem to be the most logical path to satisfying both good part load fuel economy and generous power and torque characteristics. Turbo lag and subsequent lack of torque during transient acceleration (with low initial engine speeds) are characteristics of current turbocharged gasoline engines. These phenomena have prevented successful penetration of these boosted powertrains into the marketplace. Larger displacement, naturally aspirated gasoline engines have been the preferred choice.
Technical Paper

Diesel Combustion Control with Closed-Loop Control of the Injection Strategy

Current and future emission legislations require a significant reduction of engine-out emissions for Diesel engines. For a further reduction of engine-out emissions, different measures are necessary such as: Especially an advanced emission and closed-loop combustion control has gained increased significance during the past years.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Technical Paper

Fuel Property Effects on Emissions and Performance of a Light-Duty Diesel Engine

Increased demand for highly fuel efficient propulsion systems drives the engine development community to develop advanced technologies allowing improving the overall thermal efficiency while maintaining low emission levels. In addition to improving the thermal efficiencies of the internal combustion engine itself the developments of fuels that allow improved combustion as well as lower the emissions footprint has intensified recently. This paper will describe the effects of five different fuel types with significantly differing fuel properties on a state-of-the-art light-duty HSDI diesel engine. The fuels cetane number ranges between 26 and 76. These fuels feature significantly differing boiling characteristics as well as heating values. The fuel selection also contains one pure biodiesel (SME - Soy Methyl Ester). This study was conducted in part load and full load operating points using a state of the art HSDI diesel engine.
Journal Article

Operation Strategies for Controlled Auto Ignition Gasoline Engines

Controlled Auto Ignition combustion systems have a high potential for fuel consumption and emissions reduction for gasoline engines in part load operation. Controlled auto ignition is initiated by reaching thermal ignition conditions at the end of compression. Combustion of the CAI process is controlled essentially by chemical kinetics, and thus differs significantly from conventional premixed combustion. Consequently, the CAI combustion process is determined by the thermodynamic state, and can be controlled by a high amount of residual gas and stratification of air, residual gas and fuel. In this paper both fundamental and application relevant aspects are investigated in a combined approach. Fundamental knowledge about the auto-ignition process and its dependency on engine operating conditions are required to efficiently develop an application strategy for CAI combustion.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.