Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Operation Strategies for Controlled Auto Ignition Gasoline Engines

2009-04-20
2009-01-0300
Controlled Auto Ignition combustion systems have a high potential for fuel consumption and emissions reduction for gasoline engines in part load operation. Controlled auto ignition is initiated by reaching thermal ignition conditions at the end of compression. Combustion of the CAI process is controlled essentially by chemical kinetics, and thus differs significantly from conventional premixed combustion. Consequently, the CAI combustion process is determined by the thermodynamic state, and can be controlled by a high amount of residual gas and stratification of air, residual gas and fuel. In this paper both fundamental and application relevant aspects are investigated in a combined approach. Fundamental knowledge about the auto-ignition process and its dependency on engine operating conditions are required to efficiently develop an application strategy for CAI combustion.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

Future Potential and Development Methods for High Output Turbocharged Direct Injected Gasoline Engines

2006-04-03
2006-01-0046
With rising gasoline prices in the US the need for increasingly fuel efficient powertrain concepts has never been more critical. Evaluation of the market on the other hand shows that the vehicle-buying consumer is unwilling to compromise engine power output for this needed fuel efficiency. Boosted, direct-injected gasoline engines with high specific output and low end torque seem to be the most logical path to satisfying both good part load fuel economy and generous power and torque characteristics. Turbo lag and subsequent lack of torque during transient acceleration (with low initial engine speeds) are characteristics of current turbocharged gasoline engines. These phenomena have prevented successful penetration of these boosted powertrains into the marketplace. Larger displacement, naturally aspirated gasoline engines have been the preferred choice.
X