Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Metric-based Evaluation of Software Architecture for an Engine Management System

2016-04-05
2016-01-0037
Powertrain software development for series production faces multifaceted challenges related to high functional complexity, high quality standards, reduced time to market and high development costs. Software architecture tackles the above mentioned challenges by breaking down the complexity of application software into modular components. Hence, design errors introduced during that phase cause significant cost and time deviations. Early and repeated analysis of new and modified architecture artifacts is required to detect design errors and the impact of the subsequent changes in the software architecture. Engine management software has a high degree of functional complexity and large number of system variants depending upon market requirements. This paper deals with the methods to perform automated evaluation of Renault’s EMS 2012 Engine Management Software in a Continuous Integration Framework.
Journal Article

Metric-based Evaluation of Powertrain Software Architecture

2017-03-28
2017-01-1615
Ensuring software quality is one of the key challenges associated with the development of automotive embedded systems. Software architecture plays a pivotal role in realizing functional and non-functional requirements for automotive embedded systems. Software architecture is a work-product of the early stages of software development. The design errors introduced at the early stages of development will increase cost of rework. Hence, an early evaluation of software architecture is important. PERSIST (Powertrain control architecture Enabling Reusable Software development for Intelligent System Tailoring) is a model-based software product line approach which focuses on cross-project standardization of powertrain software. The product line is characterized by common design guidelines and adherence to industry standards like ISO 25010, AUTOSAR and ISO 26262.
X