Refine Your Search

Topic

Author

Search Results

Technical Paper

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2011-04-12
2011-01-0415
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel, and code named "Scorpion," was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. The combustion system includes the piston bowl, swirl level, number of nozzle holes, fuel spray angle, nozzle tip protrusion, nozzle hydraulic flow, and nozzle-hole taper. While all of these parameters could be explored through extensive hardware testing, 3-D CFD studies were utilized to quickly screen two bowl concepts and assess their sensitivities to a few of the other parameters. The two most promising bowl concepts were built into single-cylinder engines for optimization of the rest of the combustion system parameters. 1-D CFD models were used to set boundary conditions at intake valve closure for 3-D CFD which was used for the closed-cycle portion of the simulation.
Technical Paper

The Impact of Engine Design Constraints on Diesel Combustion System Size Scaling

2010-04-12
2010-01-0180
A set of scaling laws were previously developed to guide the transfer of combustion system designs between diesel engines of different sizes [ 1 , 2 , 3 , 4 ]. The intent of these scaling laws was to maintain geometric similarity of key parameters influencing diesel combustion such as in-cylinder spray penetration and flame lift-off length. The current study explores the impact of design constraints or limitations on the application of the scaling laws and the effect this has on the ability to replicate combustion and emissions. Multi dimensional computational fluid dynamics (CFD) calculations were used to evaluate the relative impact of engine design parameters on engine performance under full load operating conditions. The base engine was first scaled using the scaling laws. Design constraints were then applied to assess how such constraints deviate from the established scaling laws and how these alter the effectiveness of the scaling effort.
Technical Paper

Internal combustion engine calibration teaching by Stand Alone System.

2010-10-06
2010-36-0346
Internal combustion engine calibration teaching by Stand Alone System. This paper illustrates a teaching methodology for technical students of internal combustion engine calibration, by stand alone engine control unit with variable ignition and fuel injection time. Using a system named HIS (Stand alone Electronic Control Unit), to change the engine parameters, as fuel injection time and ignition time, the students can optimize fuel consumption, performance and exhaust emission. The tests are developed using the DOE (design of experiments) technique of artificial intelligence.
Technical Paper

Particle Number Emissions from a Range of European Vehicles

2010-04-12
2010-01-0786
In light of forthcoming particle number legislation for light-duty passenger vehicles, time-resolved Particle Mass (PM) and Particle Number (PN) emissions over the New European Drive Cycle (NEDC) are reported for four current vehicle technologies; modern diesel, with and without a Diesel Particulate Filter (DPF), Direct Injection Spark Ignition (DISI) gasoline and multi-point Port Fuel Injection (PFI) gasoline. The PN and PM emissions were ordered (highest to lowest) according to: Non-DPF diesel ≻ DISI ≻ PFI ~ DPF diesel. Both the non-DPF diesel and DISI vehicles emitted PN and PM continuously over the NEDC. This is in contrast with both the DPF diesel and PFI vehicles which emitted nearly all their PN and PM during the first 200 seconds. The PFI result is thought to be a consequence of cold-start mixture preparation whilst several possible explanations are offered for the DPF diesel trend.
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

2011-08-30
2011-01-1763
The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Journal Article

In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-0259
A single-cylinder Direct Injection Spark Ignition (DISI) engine with optical access was used to investigate the effects of ethanol/gasoline blends on in-cylinder formation of particulate matter (PM) and fuel spray characteristics. Indolene was used as a baseline fuel and two blends of 50% and 85% ethanol (by volume, balance indolene) were investigated. Time resolved thermal radiation (incandescence/natural luminosity) of soot particles and fuel spray characteristics were recorded using a high speed camera. The images were analyzed to quantify soot formation in units of relative image intensity as a function of important engine operating conditions, including ethanol concentration in the fuel, fuel injection timing (250, 300 and 320° bTDC), and coolant temperature (25°C and 90°C). Spatially-integrated incandescence was used as a metric to quantify the level of in-cylinder PM formed at the different operating conditions.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Journal Article

Investigation and Development of Fuel Slosh CAE Methodologies

2014-04-01
2014-01-1632
When a vehicle with a partially filled fuel tank undergoes sudden acceleration, braking, turning or pitching motion, fuel sloshing is experienced. It is important to establish a CAE methodology to accurately predict slosh phenomenon. Fuel slosh can lead to many failure modes such as noise, erroneous fuel indication, irregular fuel supply at low fuel level and durability issues caused by high impact forces on tank surface and internal parts. This paper summarizes activities carried out by the fuel system team at Ford Motor Company to develop and validate such CAE methodology. In particular two methods are discussed here. The first method is Volume Of Fluid (VOF) based incompressible multiphase Eulerian transient CAE method. The CFD solvers used here are Star CD and Star CCM+. The second method incorporates Fluid-Structure interaction (FSI) using Arbitrary Lagrangian-Eulerian (ALE) formulation.
Technical Paper

Port Injection of Water into a DI Hydrogen Engine

2015-04-14
2015-01-0861
Hydrogen fueled internal combustion engines have potential for high thermal efficiencies; however, high efficiency conditions can produce high nitrogen oxide emissions (NOx) that are challenging to treat using conventional 3-way catalysts. This work presents the results of an experimental study to reduce NOx emissions while retaining high thermal efficiencies in a single-cylinder research engine fueled with hydrogen. Specifically, the effects on engine performance of the injection of water into the intake air charge were explored. The hydrogen fuel was injected into the cylinder directly. Several parameters were varied during the study, including the amount of water injected into the intake charge, the amount of fuel injected, the phasing of the fuel injection, the number of fuel injection events, and the ignition timing. The results were compared with expectations for a conventionally operated hydrogen engine where load was controlled through changes in equivalence ratio.
Technical Paper

Robustness and Performance Near the Boundary of HCCI Operating Regime of a Single-Cylinder OKP Engine

2006-04-03
2006-01-1082
A single-cylinder OKP (optimized kinetic process) engine, which uses homogeneous-charge compression-ignition (HCCI) technology, was tested, following a previous study, to evaluate the combustion system robustness and to improve the engine performance near the boundaries of the HCCI operating regime at light loads, high loads and high speed. To evaluate the robustness of HCCI combustion control, gasoline fuels with different RON were used, and the engine was tested at different coolant temperatures. It was demonstrated that the proposed HCCI control approaches could control the OKP engine system to operate robustly using different fuels and at different coolant temperatures. The effects of fuel injection timing and residual gas fraction on HCCI combustion and emissions, especially CO emissions and combustion efficiency, were tested at light loads; and the mechanisms were analyzed.
Technical Paper

Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct-Injection SI Engine

1998-02-23
980495
Fuel-air mixing in a direct-injection SI engine was studied to further improve full-load torque output. The fuel-injection location of DI vs. PFI results in different heat sources for fuel evaporation, hence a DI engine has been found to exhibit higher volumetric efficiency and lower knocking tendency, resulting in higher full-load torque output [1]. The ability to change injection timing of the DI engine affects heat transfer and mixture temperature, hence later injection results in lower knocking tendency. Both the higher volumetric efficiency and the lower knocking tendency can improve engine torque output. Improving volumetric efficiency requires that the fuel is injected during the intake stroke. Reducing knocking tendency, in contrast, requires that the fuel is injected late during the compression stroke. Thus, a strategy of split injection was proposed to compromise the two competing requirements and further increase direct-injection SI engine torque output.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

Development of a Fuelling System to Reduce Cold-Start Hydrocarbon Emissions in an SI Engine

1996-05-01
961119
An air-assisted fuel vaporiser (AAFV), designed to replace the conventional fuelling system has been tested on a 3.0-litre development engine under simulated cold-Start conditions. Providing the cold engine with pre-vaporised fuel removed the need for an enriched mixture during start-up. Comparisons between the AAFV and standard fuelling systems were performed. Engine-out hydrocarbon (HC) exhaust emissions were measured during cold-start and the ensuing two minutes. Fuel spray characterisation was also conducted using a steady flow test rig designed to mimic inlet port conditions of air flow and manifold pressure over a wide range of engine operation.
Technical Paper

The Occurrence of Flash Boiling in a Port Injected Gasoline Engine

1998-10-19
982522
The occurrence of flash boiling in the fuel spray of a Port Fuel Injected (PFI) spark ignition engine has been observed and photographed during normal automotive vehicle operating conditions. The flash boiling of the PFI spray has a dramatic affect on the fuel spray characteristics such as droplet size and spray cone angle which can affect engine transient response, intake valve temperature and possibly hydrocarbon emissions. A new method of correlating the spray behavior using the equilibrium vapor/liquid (V/L) volume ratio of the fuel at the measured fuel temperature and manifold pressure is introduced.
Technical Paper

Design and Analysis of the Ford GT Spaceframe

2004-03-08
2004-01-1255
The Ford GT is a high performance sports car designed to compete with the best that the global automotive industry has to offer. A critical enabler for the performance that a vehicle in this class must achieve is the stiffness and response of the frame structure to the numerous load inputs from the suspension, powertrain and occupants. The process of designing the Ford GT spaceframe started with a number of constraints and performance targets derived through vehicle dynamics CAE modeling, crash performance requirements, competitive benchmarking and the requirement to maintain the unique styling of the GT40 concept car. To achieve these goals, an aluminum spaceframe was designed incorporating 35 different extrusion cross-sections, 5 complex castings, 4 smaller node castings and numerous aluminum stampings.
Technical Paper

Some Concepts of DISI Engine for High Fuel Efficiency and Low Emissions

2002-10-21
2002-01-2747
Stratified-charge DISI engines have been launched in the market by Mitsubishi, Toyota, and Nissan. This paper discusses the current production stratified-charge DISI systems and some alternative systems, including the system using air-forced fuel injection and a proposed system that uses a swirl flow in the piston bowl with a special shape to separate the fuel-rich mixture layer from the wall surface. New DISI concepts are proposed to overcome some drawbacks of current bowl-in-piston type stratified-charge DISI systems. Charge stratification can be realized by using a soft spray with proper spray penetration, droplet size, and cone angle, as shown by CFD simulation results. The drawbacks of fuel wall wetting, soot limited load with charge stratification, large surface to volume ratio, etc., of the bowl-in-piston type system can be minimized.
Technical Paper

Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

1997-02-24
970625
Multidimensional modeling is used to study air-fuel mixing in a direct-injection spark-ignition engine. Emphasis is placed on the effects of the start of fuel injection on gas/spray interactions, wall wetting, fuel vaporization rate and air-fuel ratio distributions in this paper. It was found that the in-cylinder gas/spray interactions vary with fuel injection timing which directly impacts spray characteristics such as tip penetration and spray/wall impingement and air-fuel mixing. It was also found that, compared with a non-spray case, the mixture temperature at the end of the compression stroke decreases substantially in spray cases due to in-cylinder fuel vaporization. The computed trapped-mass and total heat-gain from the cylinder walls during the induction and compression processes were also shown to be increased in spray cases.
Technical Paper

Transient A/F Estimation and Control Using a Neural Network

1997-02-24
970619
A new estimator for IC engine A/F ratio is described. A/F ratio is important for engine operation since it determines the quantities of engine emissions, such as HC, CO, NOx, the conversion efficiency of catalyst systems, and the engine combustion stability. The A/F ratio estimator described in this paper is based on a fundamental metric that relies on inducing and detecting crankshaft speed fluctuations caused by modulating the engine's fuel injection pulse widths. Fuel pulse width modulation varies the instantaneous combustion A/F ratio crankshaft velocity. Synchronous measurement of crankshaft velocity provides a metric that, when used with other engine state variables as inputs to a conventional neural network, can accurately estimate A/F ratio. The estimator provides A/F information when a physical sensor is not available.
Technical Paper

Ford Hydrogen Engine Powered P2000 Vehicle

2002-03-04
2002-01-0243
The first known, North American OEM vehicle powered exclusively by a hydrogen fueled internal combustion engine (H2ICE) has been developed and tested. This production viable, low cost, low emission vehicle is viewed as a short term driver for the hydrogen fueling infrastructure ultimately required for fuel cell vehicles. This vehicle features a highly optimized hydrogen IC engine, a triple redundant hydrogen safety system, and a dedicated gaseous hydrogen fuel system. The vehicle and its test results are presented in this paper.
X