Refine Your Search

Topic

Author

Affiliation

Search Results

Video

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-05-29
Plugin Hybrid Electric Vehicles (PHEV) have a large battery which can be used for electric only powertrain operation. The control system in a PHEV must decide how to spend the energy stored in the battery. In this paper, we will present a prototype implementation of a PHEV control system which saves energy for electric operation in pre-defined geographic areas, so called Green Zones. The approach determines where the driver will be going and then compares the route to a database of predefined Green Zones. The control system then reserves enough energy to be able to drive the Green Zone sections in electric only mode. Finally, the powertrain operation is modified once the vehicle enters the Green Zone to ensure engine operation is limited. Data will be presented from a prototype implementation in a Ford Escape PHEV Presenter Johannes Kristinsson
Journal Article

Accuracy of Selected 2008 Ford Restraint Control Module Event Data Recorders

2009-04-20
2009-01-0884
The paper reports test results for accuracy of pre-crash speed, brake, and accelerator pedal position data recorded in a new family of Ford RCM EDR’s under steady state conditions. The authors drove 2 test vehicles at 3 different speeds from 48 to 113 km/h (30 to 70 mph), and artificially created EDR events so pre-crash data would be stored. The authors collected RCM data and PCM data. A GPS based Racelogic VBOX was used to measure speed and record CAN bus information real time. Maximum error, average error, and 98% confidence intervals are reported for RCM to VBOX and PCM to VBOX. Accelerator pedal position accuracy and brake on/off reporting latency of the RCM to CAN bus data and/or auxiliary brake switches are documented.
Journal Article

Relationship between Seatback Stiffness/Strength and Risk of Serious/Fatal Injury in Rear-Impact Crashes

2009-04-20
2009-01-1201
To determine the relationship between seatback stiffness or strength and the likelihood of serious/fatal injury for drivers and rear seat occupants in rear-impact crashes, analyses were performed using 1995-2006 police-reported crash data from eleven states. Seatback stiffness and strength data was included for 29 different seatback designs used in 40 vehicle models (model years 1995-2006). Results indicate there is no statistically significant relationship between seatback stiffness or strength and the risk of serious/fatal injury in rear-impact crashes. Factors shown to have statistically significant effect on the likelihood of serious/fatal injury in rear-impact collisions include occupant age, gender, and alcohol impairment; vehicle type; and vehicle mass ratio.
Technical Paper

The Effects of Flare Component Specifications on the Sealing of Double Inverted Flare Brake Tube Joints

2009-04-20
2009-01-1029
While SAE double inverted flares have been in use for decades, leaking joints continue to be a problem for OEMs in production settings consuming time and energy to detect and correct them before releasing vehicles from the assembly plant. It should be noted that this issue is limited to first-time vehicle assembly; once a flared brake tube joint is sealed at the assembly plant it remains sealed during normal customer usage. From their inception through the late 1980s most brake tubes have been 3/16″ nominal diameter. With the advent of higher flow requirements of Traction Control and Yaw/Stability control systems, larger tubes of 1/4″ and 5/16″ size have also been introduced. While it was known that the first-time sealing capability of the 3/16″ joint was not 100%, leakers were generally containable in the production environment and the joint was regarded as robust.
Technical Paper

Verification of Accelerated PM Loading for DPF Qualification Studies

2009-04-20
2009-01-1089
High gas prices combined with demand for improved fuel economy have prompted increased interest in diesel engine applications for both light-duty and heavy-duty vehicles. The development of aftertreatment systems for these vehicles requires significant investments of capital and time. A reliable and robust qualification testing procedure will allow for more rapid development with lower associated costs. Qualification testing for DPFs has its basis in methods similar to DOCs but also incorporates a PM loading method and regeneration testing of loaded samples. This paper examines the effects of accelerated loading using a PM generator and compares PM generator loaded DPFs to engine dynamometer loaded samples. DPFs were evaluated based on pressure drop and regeneration performance for samples loaded slowly and for samples loaded under accelerated conditions. A regeneration reactor was designed and built to help evaluate the DPFs loaded using the PM generator and an engine dynamometer.
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Technical Paper

Cu/Zeolite SCR on High Porosity Filters: Laboratory and Engine Performance Evaluations

2009-04-20
2009-01-0897
Selective catalytic reduction (SCR) is expected to be used extensively in the U.S. for diesel vehicle NOx control. Much progress has been made on improving performance and reducing complexity of SCR systems for vehicles in the past several years. SCR system complexity can be reduced further by implementation of SCR-coated diesel particulate filters (SCRFs). In this system, a high porosity (> 50%) filter substrate is coated with an SCR formulation, ideally in the pores of the filter walls, so that the DPF and SCR functions can be combined into a single catalyst. Two state-of-the-art Cu/zeolite SCR formulations and three types of high porosity filter substrates were included in this study. Laboratory and engine-dynamometer tests were performed to measure NOx conversion under a variety of conditions to assess the impact of ammonia oxidation, inlet NO2/NOx ratio, ammonia/NOx ratio, oxygen level, space velocity, soot loading, and ammonia loading level.
Technical Paper

The Impact of Globalization and New Materials on the Transition to a Fully Digital Tool and Die

2009-04-20
2009-01-0979
Until recently, tool & die making was a very traditional industry, relying on extensive know-how accumulated over decades of practice. Essentially, it remained a two stage-process: engineering/manufacture, followed by tryout/productionization. Improvements focused on engineering and production methods, but tryout remained the exclusive domain of the die maker. At last, advances in computer modeling methods and the adoption of aggressive lean management principles have brought transformational changes to the tryout phase. At the same time, new safety and weight imperatives have increased the penetration of advanced materials, whose formability characteristics are quite different from mild steels. This paper will explore how these advanced materials affect this transformation.
Technical Paper

DP590 GI Mechanical Property Variability and Structural Response CAE Studies

2009-04-20
2009-01-0799
Advanced High Strength Steels (AHSS) such as DP590 HDGI are helping automakers meet increasingly higher structural performance requirements while maintaining or reducing weight of the vehicle body structure [7]. One of the issues facing design engineers implementing new materials such as AHSS is the lack of understanding the expected material variability within a steel supplier and also from one steel supplier to another; and how the variability affects product attribute performances. In this paper, we present an analysis of the aggregated mechanical property variability data obtained from several steel suppliers for a popular AHSS grade and also present studies related to the effect of material variability on structural responses.
Technical Paper

Resistance Spot Welding Evaluation of Transformation Induced Plasticity 780 (TRIP780) Steel for Automotive Body Structural Applications

2009-04-20
2009-01-0805
There has been a substantial increase in the use of advanced high strength steel (AHSS) in automotive structures in the last few years. The usage of these materials is projected to grow significantly in the next 5–10 years with the introduction of new safety and fuel economy regulations. AHSS are gaining popularity due to their superior mechanical properties and use in parts for weight savings potential, as compared to mild steels. These new materials pose significant manufacturing challenges, particularly for welding and stamping. Proper understanding of the weldability of these materials is critical for successful application on future vehicle programs. Due to the high strength nature of AHSS materials, higher weld forces and longer weld times are often needed to weld these advanced steels.
Technical Paper

Driver Workload Effects of Cell Phone, Music Player, and Text Messaging Tasks with the Ford SYNC Voice Interface versus Handheld Visual-Manual Interfaces

2009-04-20
2009-01-0786
A fixed-base driving simulator study was conducted to compare driver performance and eye glance behavior effects of tasks performed using the voice interface in Ford Motor Company’s SYNC® system versus handheld operation of portable music players and cellular phones. Data were analyzed from a sample of 25 test participants. All test participants were regular SYNC users (but not SYNC developers), though they varied in their familiarity with SYNC functions. During a car-following scenario at highway speeds on the simulator, the participants performed 7 tasks using SYNC’s voice interface and those same 7 tasks with their own handheld music player and cellular phone. The seven tasks under test were: dial a 10-digit number; call a specific person from a phonebook; receive a call while driving; play a specific song; play songs from a specific artist; review (listen to or read) a text message; and select a reply from a list or type a reply to a text message.
Technical Paper

Bending Process Optimization of Dual Phase 780 (DP780) Tubes for Body Structural and Chassis Applications

2010-04-12
2010-01-0230
To reach safety, emissions, and cost objectives, manufacturers of automotive body structural and chassis components shape thin gauge, high strength steel tube with a bending, pre-forming and hydroforming process. Challenging grades and bend severity require a careful optimization of the bending procedure. A joint project between Ford and ArcelorMittal Tubular Products investigated suitable bending parameters for severe bends using commercially available thin-walled DP780 and HSLA350 tubes. This paper summarizes the measurement methods found to be capable of capturing small differences in bending formability and details the influence of bender variables such as boost, pressure die, center-line bend radius and bend angle on the wrinkling, thinning and springback of these tubes. As a result of this work, recommendations were made as to effective bender set-ups for these tubes.
Technical Paper

A Statistical Approach to Analysis of Crash Sensor Performance

2009-04-20
2009-01-0372
Understanding the variation in the deployment times for crash sensor systems is important to ensure robust performance of a crash sensor system. Increases in both the numbers of crash modes and deployable devices have reduced the margins for the decisions about when to deploy any given device. Currently, the industry practice is to run a sweep over the potential sources of variation, recording the minimum and maximum deployment time. Questions such as: “How often do the extremes occur?” or “Are there multiple peaks in the deployment time?” can not be answered. This work uses numerical analysis methods to build on the current sweep methodology to obtain information on the distribution of the deployment times so that questions such as these can be answered when evaluating sensor calibrations. The end result is better informed engineering decisions during the calibration development.
Journal Article

Development of a Full Vehicle Electrocoat Paint Simulation Tool

2009-04-20
2009-01-0468
The primary coating layer that inhibits salt spray induced corrosion on vehicle bodies is electrocoat. The application of electrocoat involves the electrodeposition of a polymer film on all metallic components of the vehicle body after body construction. Particularly challenging in the electrocoat process is the deposition of the coating in recessed areas of the vehicle due to material and electrical current access constraints to those regions. Currently the verification of correct electrocoat coverage requires the use of costly tear-down prototypes. A simulation tool, called EPD, has been developed that predicts the electrocoat coverage on the full vehicle body. The tool allows engineers to identify areas where there may be issues with electrocoat coverage and to see the effect of vehicle design or process modifications on coverage. A challenge in the development of any simulation tool is computational speed.
Technical Paper

A Practical Approach to Consider Forming Effects for Full Vehicle Crash Application

2009-04-20
2009-01-0471
The forming effects along with strain rate, actual material properties and weld effects have been found to be very critical for accurate prediction of crash responses especially the prediction of local deformation. As a result, crash safety engineers started to consider these factors in crash models to improve the accuracy of CAE prediction and reduce prototype testing. The techniques needed to incorporate forming simulation results, including thickness change, residual stresses and strains, in crash models have been studied extensively and are well known in automotive CAE community. However, a challenge constantly faced by crash safety engineers is the availability of forming simulation results, which are usually supplied by groups conducting forming simulations. The forming simulation results can be obtained by either using incremental codes with actual stamping processes or one-step codes with final product information as a simplified approach.
Technical Paper

Cold Start Performance and Enhanced Thermal Durability of Vanadium SCR Catalysts

2009-04-20
2009-01-0625
For diesel applications, cold start accounts for a large amount of the total NOx emissions during a typical Federal Test Procedure (FTP) for light-duty vehicles and is a key focus for reducing NOx emissions. A common form of diesel NOx aftertreatment is selective catalytic reduction (SCR) technology. For cold start NOx improvement, the SCR catalyst would be best located as the first catalyst in the aftertreatment system; however, engine-out hydrocarbons and no diesel oxidation catalyst (DOC) upstream to generate an exotherm for desulfation can result in degraded SCR catalyst performance. Recent advances in vanadia-based SCR (V-SCR) catalyst technology have shown better low temperature NOx performance and improved thermal durability. Three V-SCR technologies were tested for their thermal durability and low-temperature NOx performance, and after 600°C aging, one technology showed low-temperature performance on par with state-of-the-art copper-zeolite SCR (Cu-SCR) technology.
Journal Article

Impact and Prevention of Ultra-Low Contamination of Platinum Group Metals on SCR Catalysts Due to DOC Design

2009-04-20
2009-01-0627
Diesel aftertreatment systems configured with a diesel oxidation catalyst (DOC) upstream of an urea selective catalytic reduction (SCR) catalyst run the risk of precious metal contamination. During active diesel particulate filter (DPF) regeneration events, the DOC bed temperature can reach up to 850°C. Under these conditions, precious metal (especially Pt) can be volatized and then deposited on a downstream SCR catalyst. In this paper, the impact of ultra-low contamination of platinum group metals (PGM) on the SCR catalyst was studied. A method based on precious metal volatilization of a Pt-rich DOC at 850°C and under lean gas conditions was employed to contaminate downstream FeSCR and CuSCR formulations. The contamination resulted in poor NOx conversion (via NOx remake) and excessive N2O formation. The precious metal volatilization method was employed to screen various Pt/Pd based DOCs to avoid contamination of the downstream FeSCR.
Journal Article

Investigating the Effects of Multiple Pilot Injections on Stability at Cold Idle for a Dl Diesel Engine

2009-04-20
2009-01-0612
An experimental investigation of combustion cycle-by-cycle stability under cold idling conditions has been carried out on a Dl diesel to examine the influence of pilot fuel injection strategy. The engine is a single cylinder variant of a multi-cylinder design meeting Euro 4 emissions requirements. The engine build had a swept volume of 500cc and a compression ratio of 18.4:1. Work output and heat release characteristics have been investigated at test temperatures of 10, 0, −10 and −20°C and speeds in the range from 600 to 1400rpm. At the lowest temperature, −20°C, stability is sensitive to the timing of main injection and is prone to deteriorate with increasing engine speed. The influence of the number of pilot injections and pilot fuel quantity on stability has been explored. Best stability was achieved by increasing the number of pilot injections as temperature is lowered, from one at 10°C to two at −10°C and between two and four at −20°C.
Technical Paper

Implementation and Evaluation of a Coriolis Flow Meter

2009-04-20
2009-01-0663
The Micro Motion CMF010P flow meter is a Coriolis-type mass flow meter used to measure dynamic and static flow rate. A detailed review of this system and five other mass flow rate measuring devices was previously completed at Ford Motor Company’s Powertrain and Fuel Subsystems Laboratory [1, 2]. The comparison analyzed the dynamic mass flow rate results of a high-pressure gasoline fuel injector. The Micro Motion flow meter proved to be easy to use while providing sufficient accuracy and repeatability at a reasonable price. The meter’s inherent technology measures the change in flow tube oscillation frequency and twist to obtain highly accurate density and flow rate measurements. Unfortunately, the operating principle can be subject to resonance. Therefore, the resonant frequencies need to be identified and avoided when taking measurements.
Technical Paper

Summary of Flow Metering Options for Injector Characterization

2009-04-20
2009-01-0664
A review was conducted of the various fuel injector flow rate measurement methods that are commercially available. The scope of the review was primarily focused on the gasoline applications of Port Fuel Injection (PFI) and Direct Injection Spark Ignition (DISI), but Diesel applications were reviewed as well. These flow meters were compared at the Powertrain & Fuel Subsystems Laboratory (PFSL) of Ford Motor Company. The purpose of this paper is to review the capabilities of each flow meter that is commercially available for use in injector characterization benches and engine test beds.
X