Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Regenerative Braking Control Development for P2 Parallel Hybrid Electric Vehicles

2017-03-28
2017-01-1149
Regenerative braking in hybrid electric vehicles is an essential feature to achieve the maximum fuel economy benefit of hybridization. During vehicle braking, the regenerative braking recuperates its kinetic energy, otherwise dissipated into heat due to friction brake, into electrical energy to charge the battery. The recuperation is realized by the driven wheels propelling, through the drivetrain, the electric motor as a generator to provide braking while generating electricity. “Rigid” connection between the driven wheels and the motor is critical to regenerative braking; otherwise the motor could drive the input of the transmission to a halt or even rotating in reverse direction, resulting in no hydraulic pressure for transmission controls due to the loss of transmission mechanical oil pump flow.
Journal Article

Methods of Measuring Regenerative Braking Efficiency in a Test Cycle

2017-03-28
2017-01-1168
In Hybrid Electric Vehicles, Regenerative Braking is an essential function to convert vehicle kinetic energy into electrical energy, which charges the battery during a braking event to make a portion of captured kinetic energy available for use later. In comparison, conventional vehicles use friction brakes only and kinetic energy is dissipated as heat and not made available for later use. This paper introduces methods of evaluating Regenerative Braking Efficiency, including multiple efficiency definitions that lead to different attributes. The paper proposes regenerative brake event definitions during the FTP cycle and how they are used for control strategy and calibration updates. Also, we apply the efficiency metrics to four different vehicles from four automotive manufacturers for comparison. The paper presents a sample comparison result.
X