Refine Your Search

Topic

Search Results

Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Implementation, Improvement and Statistical Validation of Scoring by Milling Process on an Instrument Panel with In-Mold Grain Lamination

2020-01-13
2019-36-0155
This paper starts describing the in-mold grain lamination and bilaminated film cover when applied to instrument panels with seamless passenger air bag doors. It then offers a comparison between two different PAB door weakening processes, the laser scoring and the scoring by milling. It further discuss the scoring by milling process and analyses its implementation on a real case instrument panel. In the implementation case, the scoring pattern is checked against a pre-defined engineering specification and correlated to the results of a drop tower test, which shows the force necessary to break the PAB door. Three iterations are performed until the results for scoring pattern and breaking force are achieved. The breaking force results are then statistically validated against the specification and capability analysis.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

Objective chime sound quality evaluation

2006-11-21
2006-01-2667
Customer perception of vehicle quality and safety is based on many factors. One important factor is the customers impression of the sounds produced by body and interior components such as doors, windows, seats, safety belts, windshield wipers, and other similar items like sounds generated automatically for safety and warning purposes. These sounds are typically harmonic or constant, and the relative level of perception, duration, multiplicity, and degree of concurrence of these sounds are elements that the customer will retain in an overall quality impression. Chime sounds are important to the customer in order to alert that something is not accomplished in a right way or for safe purposes. The chimes can be characterized by: sound level perception, frequency of the signal, shape of the signal, duration of the “beep” and the silence duration.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

Grade and Gage Sensitivities to Oil-Canning Loads of a Door Assembly Considering Forming Effects

2004-03-08
2004-01-0164
A finite element methodology, based on implicit numerical integration procedure, for simulating oil-canning tests on Door assemblies is presented. The method takes into account nonlinearities due to geometry, material and contact between parts during deformation. The simulation results are compared with experimental observations. Excellent correlation between experimental observations and analytical predictions are obtained in these tests. Armed with the confidence in the methodology, simulations on a door assembly are conducted to study the gage and grade sensitivities of the outer panel. The sensitivity studies are conducted on three different grades of steel for the outer panel. Further studies are conducted to understand the effects of manufacturing (forming operation) on the oil canning behavior of door assembly. Results demonstrate the utility of the method in material selection during pre-program design of automotive structures.
Technical Paper

Automotive Body Structure Enhancement for Buzz, Squeak and Rattle

2004-03-08
2004-01-0388
Today, the interior noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many assemblies such as instrumentation panel, doors, sun/moon-roof, deck lids, hood, etc. which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. An extensive study is made regarding the overall structural behavior as well as their interaction under typical road loads to come up with enhanced design for improved quality from the BSR noise perspective. The alternative designs were comparatively evaluated for their relative noise level from buzz, squeak and rattle perspective using an analytical tool - N-hance.BSR.
Technical Paper

Swing Gate Development and Correlation Studies

2003-11-18
2003-01-3627
This paper documents the Engineering design of the rear door system for Ford's South American New Vehicle. This Closure system represents a first for the Engineering Department of Ford branded products and it also offers many industry firsts for the customer. This paper is not a concise A-Z document on Closure design, but a detailed report listing the important factors to consider in a Swing Gate.
Technical Paper

The Effect of Seal Stiffness on Door Chucking and Squeak and Rattle Performance

2004-03-08
2004-01-1562
Traditionally, door seals are designed to achieve good wind noise performance, water leakage and door closing effort in a vehicle design and development process. However, very little is known concerning the effect of door seal design on vehicle squeak and rattle performance. An earlier research work at Ford indicates a strong correlation between the diagonal distortions of body closure openings (in a low frequency range 0 - 50 Hz) and overall squeak and rattle performance. Another research at Ford reveals that relative accelerations between door latch and striker in a low frequency region (0 - 50 Hz) correlate well with door chucking performance. The findings of this research work enable engineers to assess squeak and rattle and door chucking performance using vehicle low frequency NVH CAE models at a very early design stage.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Design of Automotive Structures Using Multi-Model Optimization

2017-03-28
2017-01-1342
The use of structural optimization in the design of automotive structures is increasingly common. However, it is often challenging to apply these methods simultaneously for different requirements or model configurations. Multi-model optimization (MMO) aims to simplify the iterative design process associated with optimizing multiple parts or configurations with common design variables especially when conflicting requirements exist. In this paper, the use of MMO is demonstrated to evaluate the feasibility of an automotive door concept using an alternative material.
Technical Paper

Bumper on Striker: Improve Customer Perception Regarding Door Closing Sound Quality

2017-11-07
2017-36-0327
Did you had opportunity to hear any unpleasant noise when closing some vehicle door? In some cases reminds a metallic touch condition, in other cases reminds several components loose inside the door. The fact is that this kind of noise is definitely unpleasant to the human ears. The good news is that this undesirable condition can be solved easily through of add a soft bumper in the striker; however, needs to pay attention in the material properties and tolerance stack-up conditions to avoid generate side effect, like as high door closing efforts, break parts, lose parts, etc.
Technical Paper

A CAE Study on Side Doors Inner Panel Deflection under Glass Stall Up Forces

2017-11-07
2017-36-0205
Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
Technical Paper

Validation of Non-linear Load-Controlled CAE Analyses of Oil-Canning Tests of Hood and Door Assemblies

2003-03-03
2003-01-0603
Two finite element methodologies for simulating oil-canning tests on closure assemblies are presented. Reflecting the experimental conditions, the simulation methodologies assume load-controlled situations. One methodology uses an implicit finite-element code, namely ABAQUS®, and the other uses an explicit code, LS-DYNA®. It is shown that load-displacement behavior predicted by both the implicit and explicit codes agree well with experimental observations of oil-canning in a hood assembly. The small residual dent depth predictions are in line with experimental observations. The method using the implicit code, however, yields lower residual dent depth than that using the explicit code. Because the absolute values of the residual dent depths are small in the cases examined, more work is needed, using examples involving larger residual dent depth, to clearly distinguish between the two procedures.
Technical Paper

Application of Transient SEA for Vehicle Door Closure Sound Quality

2005-05-16
2005-01-2433
Transient Statistical Energy Analysis (SEA) is applied as an analysis technique and compared to measured data in this study. A transient SEA model for a door closure event is developed and compared to measured data to validate this model with measured acoustic and vibration responses. The validated model is then used to predict the effect of changes to component absorption, damping, stiffness, materials, and other properties. The basic theory of transient SEA and the transient SEA model used in the study are described, the validation between analytical model and measured data is shown, and the conclusions from the analysis of design changes to the vehicle components using this model are presented.
Technical Paper

Detecting and Classifying Secondary Impacts in Door Closing Sound

2005-05-16
2005-01-2471
One of the primary correlates to customer annoyance with door-closing sound is peak loudness. In addition, customer annoyance also increases with the existence of secondary impacts, such as rattles. While these secondary impacts are typically not seen in the time-varying loudness trace (or other common sound quality metrics), it is often possible to visually identify the impacts in a time-frequency display of the door-closing sound. But the reduction of this display information to a single-number objective metric that agrees with subjective assessments has previously proved elusive. This paper summarizes the recent development and application of an objective metric that agrees with subjective classifications of secondary impacts in door-closing sounds.
Technical Paper

Low Frequency Transient CAE Analysis for Vehicle Door Closure Sound Quality

2005-05-16
2005-01-2339
Improvement of vehicle door closure sound quality is one of the major customer wants. It is very desirable to understand how different door elements radiate sound during a door-closing event and how to optimize a door structure to design for a specific sound target. In this paper, a CAE tool is developed based on transient FEA and BEA for the analysis of structural-borne vehicle door closure sound quality in the low frequency range (up to 300Hz). Design sensitivity analysis (DSA) are performed for investigating effects of major design variable changes on the door closing sound quality. A SUV model was studied to validate the simulation results and to demonstrate the capability of the developed CAE tool for providing design guidelines on door closing sound quality.
Technical Paper

The Application of Magnesium Die Casting to Vehicle Closures

2005-04-11
2005-01-0338
During the last decade, advances in magnesium die casting technology have enabled the production of large lightweight thin walled die castings that offer new approaches for low investment body construction techniques. As a result, many OEMs have expressed an interest in magnesium door closure systems due to investment reduction opportunities, coupled with potential weight savings of up to 50%. However, for such applications, product engineers are faced with the challenge of designing for stiffness and strength in crash critical applications with a material of lower modulus and ductility compared to wrought sheet product. Concept designs for side door systems have been presented in the literature, and indicate that structural performance targets can be achieved. However, to date, series production designs feature a multitude of supplementary sheet metal reinforcements, attached to die castings, to handle structural loads.
Technical Paper

Status and Update of MVMA Component Testing

1987-05-01
871116
At the Tenth ESV Conference, MVMA reported on the development of a component side impact test device developed for MVMA by MGA Research Corporation. Since that time, the test device has been modified by MGA to improve its biofidelity. Testing has shown that the modified device better meets the force-time corridors derived by MVMA from cadaver drop test data. The improved test device was used to test twelve 1985 Ford LTD doors at speeds of 25.7 and 37 km/h. The interior door surfaces were trimmed with either thin fiber board or foam padding identical to doors in vehicles tested by MVMA using NHTSA's full-vehicle test procedure. The tests showed that the MVMA device is simple to set up and run, is highly repeatable and easily discriminates between the unpadded and padded doors. A major issue for future research and development is how to select a priori a component test device impact speed which can account for differences in car size and side structure stiffness.
X