Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Adaptive Temperature Control for Diesel Particulate Filter Regeneration

2013-04-08
2013-01-0517
The regeneration process of a Diesel Particulate Filter (DPF) consists of an increase in the engine exhaust gas temperature by using post injections and/or exhaust fuel injection during a period of time in order to burn previously trapped soot. The DPF regeneration is usually performed during a real drive cycle, with continuously changing driving conditions. The quantity of post injection/exhaust fuel to use for regeneration is calculated using a combination of an open loop term based on engine speed, load and exhaust gas flow and a closed loop term based on an exhaust gas temperature target and the feedback from a number of sensors. Due to the nature of the system and the slow response of the closed loop term for correcting large deviations, the authority of the fuel calculation is strongly biased to the open loop. However, the open loop fuel calculation might not be accurate enough to provide adequate temperature tracking due to several disturbances in the system.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

Investigation of Diesel Liquid Spray Penetration Fluctuations under Vaporizing Conditions

2012-04-16
2012-01-0455
Diesel combustion and emissions formation is largely spray and mixing controlled and hence understanding spray parameters, specifically vaporization, is key to determine the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, an eight-hole common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel at charge gas conditions typical of full load boosted engine operation. Liquid penetration of the eight sprays was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with 0% oxygen. Conditions investigated included a charge temperature sweep of 800 to 1300 K and injection pressure sweep of 1034 to 2000 bar at a constant charge density of 34.8 kg/m₃.
Technical Paper

Particulate Matter and Hydrocarbon Emissions Measurements: Comparing First and Second Generation DISI with PFI in Single Cylinder Optical Engines

2006-04-03
2006-01-1263
A Spray Guided Direct Injection (SGDI) engine has been shown to emit less Particulate Matter (PM) than a first generation (wall guided) Direct Injection Spark Ignition (DISI) engine. The reduction is attributed to the reduced incidence of fuel-wall impingement and higher fuel injection pressure. The extent to which this is true was investigated by comparison between single cylinder SGDI and DISI engines. Both engines were also operated with conventional port injection to provide a baseline. Feedgas PM number concentration and size spectra were measured using a Cambustion differential mobility spectrometer for the fuels iso-octane and toluene with a range of Air-Fuel Ratios (AFRs), ignition and injection timings.
Technical Paper

Freeze Protection of Onboard Urea Co-Fueling System

2006-04-03
2006-01-0645
The urea co-fueling approach to refilling a urea storage container onboard a vehicle is based on the design of a two-fluid dispensing nozzle. With a single refueling operation the nozzle enables an independent delivery of two fluids, diesel fuel and urea, into two separate containers. The person refueling the vehicle needs no new skills or knowledge. But most importantly, the co-fueling method eliminates a separate and a critical action of keeping up with timely refills of the urea as the condition for emissions compliance for the vehicle. However, freezing of aqueous solution of urea below -11.5°C puts additional demands on the design of the two-fluid nozzle and the vehicle fill pipe receptacle, so that a reliable co-fueling process is assured at these cold weather conditions. The paper describes the methods that prevent formation of ice in the co-fueling fill pipe, which would enable refilling of urea during continuous use of the vehicle at temperatures below urea freezing point.
Technical Paper

Simulation of Sloshing and Ballooning in Fuel Tanks for High Speed Impacts

2006-04-03
2006-01-0314
A fuel tank is one of the most critical components in a vehicle crash because it may link to passenger safety. The effect of fuel pressure on the tank boundary in a dynamic impact condition is constantly being studied both numerically and experimentally. In hard braking conditions with a partially filled tank, the fuel slams on to the front wall of the tank. During high-speed impact on the other hand, there is significant bulging of the fuel tank if it is nearly full, while vortices and cavities may form with partial filling. In these cases, the internal fuel and vapor pressure distribution can change; thus, affecting the distribution of stress on the tank. The objective of this paper is to study these phenomena using the currently available ALE (Arbitrary Lagrangian Eulerian) methodology and thus improve fuel tank design by a direct application of CAE.
Technical Paper

Rapid Fuel Injector Re-Pressurization

2007-04-16
2007-01-1075
A fuel system design objective is to have the fuel injection pressure at target pressure by the time of the first injection. In most cases, a vapor and air space forms in the highest and hottest part of the fuel injector supply as the fuel system cools following engine-off. Upon key-on, the fuel pump needs to collapse the fuel vapor and compress any air before fuel pressure can build thus delaying fuel injector re-pressurization. An inventive solution to speed re-pressurization is described. It effectively eliminates the need to collapse the fuel vapor and compress any air in the first few tenths of seconds of fuel injection re-pressurization. The factors that affect fuel injection re-pressurization time are discussed.
Technical Paper

Impact of New Evaporative Emission Requirements (Euro III/IV) on Gasoline Fuel Systems

2007-11-28
2007-01-2661
This paper describes the impact of the new evaporative emissions requirements (Euro III/IV) on automotive fuel systems. Fuel system components like carbon canister, fuel tank, filler pipes, fuel lines, vapor management system were reviewed to assure that the design of each component will achieve the new requirements.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (2) PDPA Investigation

2006-04-03
2006-01-1003
Droplet size and velocity measurements were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). The spray for this single hole, pressure-swirl fuel injector was characterized using phase Doppler interferometry. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray profile resembled a solid cone. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1. The spray profile was mostly solid. Regime 3 comprised fuel pressures from 65 - 102 bar and MAPs from 0.36 - 0.46 bar.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (1) Imaging Investigation

2006-04-03
2006-01-1004
Spray angle and penetration length data were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). Injection frequency had little effect on spray development. The spray for this single hole, pressure-swirl fuel injector was characterized using high speed imaging. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray angle and penetration lengths were comparatively small. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1.
Technical Paper

DISI Spray Modeling Using Local Mesh Refinement

2008-04-14
2008-01-0967
The accurate prediction of fuel sprays is critical to engine combustion and emissions simulations. A fine computational mesh is often required to better resolve fuel spray dynamics and vaporization. However, computations with a fine mesh require extensive computer time. This study developed a methodology that uses a locally refined mesh in the spray region. Such adaptive mesh refinement will enable greater resolution of the liquid-gas interaction while incurring only a small increase in the total number of computational cells. The present study uses an h-refinement adaptive method. A face-based approach is used for the inter-level boundary conditions. The prolongation and restriction procedure preserves conservation of properties in performing grid refinement/coarsening. The refinement criterion is based on the mass of spray liquid and fuel vapor in each cell. The efficiency and accuracy of the present adaptive mesh refinement scheme is demonstrated.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

2008-04-14
2008-01-1305
This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

Summary of Flow Metering Options for Injector Characterization

2009-04-20
2009-01-0664
A review was conducted of the various fuel injector flow rate measurement methods that are commercially available. The scope of the review was primarily focused on the gasoline applications of Port Fuel Injection (PFI) and Direct Injection Spark Ignition (DISI), but Diesel applications were reviewed as well. These flow meters were compared at the Powertrain & Fuel Subsystems Laboratory (PFSL) of Ford Motor Company. The purpose of this paper is to review the capabilities of each flow meter that is commercially available for use in injector characterization benches and engine test beds.
Journal Article

Investigating the Effects of Multiple Pilot Injections on Stability at Cold Idle for a Dl Diesel Engine

2009-04-20
2009-01-0612
An experimental investigation of combustion cycle-by-cycle stability under cold idling conditions has been carried out on a Dl diesel to examine the influence of pilot fuel injection strategy. The engine is a single cylinder variant of a multi-cylinder design meeting Euro 4 emissions requirements. The engine build had a swept volume of 500cc and a compression ratio of 18.4:1. Work output and heat release characteristics have been investigated at test temperatures of 10, 0, −10 and −20°C and speeds in the range from 600 to 1400rpm. At the lowest temperature, −20°C, stability is sensitive to the timing of main injection and is prone to deteriorate with increasing engine speed. The influence of the number of pilot injections and pilot fuel quantity on stability has been explored. Best stability was achieved by increasing the number of pilot injections as temperature is lowered, from one at 10°C to two at −10°C and between two and four at −20°C.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Development and Optimization of the Ford 3.5L V6 EcoBoost Combustion System

2009-04-20
2009-01-1494
Recently, Ford Motor Company announced the introduction of EcoBoost engines in its Ford, Lincoln and Mercury vehicles as an affordable fuel-saving option to millions of its customers. The EcoBoost engine is planned to start production in June of 2009 in the Lincoln MKS. The EcoBoost engine integrates direct fuel injection with turbocharging to significantly improve fuel economy via engine downsizing. An application of this technology bundle into a 3.5L V6 engine delivers up to 12% better drive cycle fuel economy and 15% lower emissions with comparable torque and power as a 5.4L V8 PFI engine. Combustion system performance is key to the success of the EcoBoost engine. A systematic methodology has been employed to develop the EcoBoost engine combustion system.
Technical Paper

Fuel Injector Flow Rate Analysis for the Duratec 35 EcoBoost Engine

2009-04-20
2009-01-1505
Flow rate characterization for the Duratec 35 EcoBoost engine was conducted at the Powertrain and Fuel Subsystems Laboratory of Ford Motor Company as a key element in the overall calibration for that program. For high-pressure gasoline fuel injection (used in the Direct Injection Spark Ignition [DISI] EcoBoost engine) in which fuel is directly injected in the cylinder, it is important to consider several variables that are not critical for low-pressure fuel injection. In this paper, the effects of fuel pressure, injector pulse width, battery voltage and injection frequency were assessed with respect to injector flow performance (dynamic flow, shot-to-shot variation in mass flow delivery, part-to-part variability in fuel flow, injector delay and split injection performance).
Technical Paper

A Fuel Vapor Model (FVSMOD) for Evaporative Emissions System Design and Analysis

1998-10-19
982644
A fuel vapor system model (FVSMOD) has been developed to simulate vehicle evaporative emission control system behavior. The fuel system components incorporated into the model include the fuel tank and pump, filler cap, liquid supply and return lines, fuel rail, vent valves, vent line, carbon canister and purge line. The system is modeled as a vented system of liquid fuel and vapor in equilibrium, subject to a thermal environment characterized by underhood and underbody temperatures and heat transfer parameters assumed known or determined by calibration with experimental liquid temperature data. The vapor/liquid equilibrium is calculated by simple empirical equations which take into account the weathering of the fuel, while the canister is modeled as a 1-dimensional unsteady absorptive and diffusive bed. Both fuel and canister submodels have been described in previous publications. This paper presents the system equations along with validation against experimental data.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
X