Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Motor Vehicle PM Emissions Measurement at LEV III Levels

2011-04-12
2011-01-0623
This paper examines the issues concerning particulate matter (PM) emissions measurement at the 3 mg/mi level proposed as the future LEV III standard. These issues are general in nature, but are exacerbated at the low levels contemplated for upcoming emissions standards. They are discussed in the context of gasoline direct injection (GDI) engines, where they can have an important impact on the continued development of this technology for improved fuel economy. GDI particulate emissions, just as engine-out diesel PM, contain a high fraction of soot. But the total PM mass is significantly lower than from diesel engines, and there can be significant variations in emissions rate and apparent PM composition between cold-start and running emissions. PM emissions levels depend on sampling method and location. As a result, there can be substantial differences in PM sampled and diluted directly at the exhaust pipe, as opposed to measurements from a dilution tunnel.
Technical Paper

Estimating Actual Exhaust Gas Temperature from Raw Thermocouple Measurements Acquired During Transient and Steady State Engine Dynamometer Tests

2007-04-16
2007-01-0335
Thermocouples are commonly used to measure exhaust gas temperature during automotive engineering experiments. In most cases, the raw measurements are used directly as an absolute indication of the actual exhaust gas temperature. However, in reality, the signal from a TC is only an indication of its own tip temperature. The TC indicated tip temperature can deviate significantly from the actual gas temperature due to factors such as thermal capacitance of the tip itself, and heat transfer to the exhaust pipe wall through conduction and radiation. A model has been developed that calculates the effects of these factors to provide an estimate of the actual exhaust gas temperature. Experiments were performed to validate the model under both transient and steady state engine dynamometer conditions utilizing three popular sizes of TCs. Good correlation among predictions for various TC sizes confirms the model's accuracy.
Technical Paper

A Simplified Method to Make Temperature Measurements of a Metal Surface using the Surface as One Component of Thermocouple

2008-04-14
2008-01-0918
Instrumentation of an exhaust system to measure surface temperature at multiple locations usually involves welding independent thermocouples to the surface of the system. This report describes a new type of thermocouple fabricated to measure temperature at a point or temperature difference between points on a metallic object utilizing the metal as one component of the new thermocouple. AISI 316 stainless steel is used in the current study to represent automotive exhaust pipe. The other component of the thermocouple is Nickel-Chromium (Chromel, Chromega), one of the two metals used in type K thermocouples, which are generally used for exhaust temperature measurements during emission tests. Use of the new thermocouple is contingent upon an accurate calibration of its response to changes in temperature.
Technical Paper

Exhaust System Design for Sound Quality

2003-05-05
2003-01-1645
The exhaust system is one of the major P/T systems for sound quality tuning. The many varieties in exhaust pipe routing and the flexibility in muffler design make it possible to design an exhaust system to deliver tailpipe sound for specific sound quality requirements. It is essential that the tailpipe sound be balanced with other P/T sound to yield the overall sound targets. The primary contribution of an exhaust system is the firing and sub-firing orders. The typical tailpipe sound target contains banded targets for “good” orders as well as “do-not-exceed” targets for the rest. Every order target needs to be met in order to yield the right tailpipe sound. In most cases, the pipe routing and the muffler volumes of mufflers are dictated by package constraints, however, the internal design of muffler with a given volume can create quite different tailpipe sounds.
Journal Article

Laser-Based In-Exhaust Gas Sensor for On-Road Vehicles

2022-03-29
2022-01-0535
A novel laser-absorption gas sensing apparaOn-vehicle Testing at VERtus capable of measuring NO directly within vehicle exhaust was developed and tested. The sensor design was enabled by key advances in the construction of optical probes that are sufficiently compact for deployment in real-world exhaust systems and can survive the harsh, high-temperature, and strongly vibrating environment typical of exhaust streams. Prototype test campaigns were conducted at high-temperature flow facilities intended to simulate exhaust gas conditions and within the exhaust of vehicles mounted on a chassis dynamometer. Results from these tests demonstrated that the sensor prototype is fundamentally free of cross-interference with competing species in the exhaust stream, can achieve a 1 ppmv NO detection limit, and can be operated across the full range of thermodynamic conditions expected for typical vehicle exhausts.
X