Refine Your Search


Search Results

Viewing 1 to 18 of 18
Technical Paper

On Using a CFD Based Global Kinetic Reaction Model to Simulate Catalyst Exotherm with Exhaust Fuel Dosing Device (Fuel Vaporizer)

Under the current emissions legislation, most of the diesel-powered vehicles have to use Diesel Particulate Filters (DPF) to remove soot particles from the exhaust gas and the accumulated soot particles have to be removed in regular intervals. To initialize the exhaust gas temperature for soot regeneration, diesel fuel is either injected into the combustion chamber in late engine cycle (e.g. post injection) or vaporized and then discharged into the exhaust gas via a dosing device (e.g. fuel vaporizer). Both approaches though require the exothermic catalyst to convert the fuel into thermal energy. For practical reasons, this paper is concentrated on describing how CFD could be used to model the fuel distribution in an aftertreatment system equipped with fuel vaporizer and the exothermic reactions in the catalysts.
Technical Paper

Stratified-Charge Engine Fuel Economy and Emission Characteristics

Data from two engines with distinct stratified-charge combustion systems are presented. One uses an air-forced injection system with a bowl-in-piston combustion chamber. The other is a liquid-only, high-pressure injection system which uses fluid dynamics coupled with a shaped piston to achieve stratification. The fuel economy and emission characteristics were very similar despite significant hardware differences. The contributions of indicated thermal efficiency, mechanical friction, and pumping work to fuel economy are investigated to elucidate where the efficiency gains exist and in which categories further improvements are possible. Emissions patterns and combustion phasing characteristics of stratified-charge combustion are also discussed.
Technical Paper

Unburned Hydrocarbon Emissions from Stratified Charge Direct Injection Engines

The sources of unburned hydrocarbon (UHC) emissions in direct injection stratified charge engines are presented. Whereas crevices in the combustion chamber are the primary sources of UHC emissions in homogeneous charge engines, lean quenching and liquid film layers dominate UHC emissions in stratified charge operation. Emissions data from a single cylinder engine, operating in stratified charge mode at a low speed / light load condition is summarized. This operating point is interesting in that liquid film formation, as evidenced by smoke emissions, is minimal, thus highlighting the lean quenching process. The effects of operating parameters on UHC emissions are demonstrated via sweeps of spark advance, injection timing, manifold pressure, and swirl level. The effects of EGR dilution are also discussed. Spark advance is shown to be the most significant factor in UHC emissions. A semi-empirical model for UHC emissions is presented based on the analysis of existing engine data.
Technical Paper

PIV In-Cylinder Flow Measurements of Swirl and the Effect of Combustion Chamber Design

Particle Image Velocimetry (PIV) experiments were performed on single-cylinder versions of a 0.375 L/cylinder and a 0.5 L/cylinder engines from the same engine class to determine the differences in swirl flow between the two engines. Two engine speeds (750 and 1500 rpm), manifold pressures (75 kPa and 90 kPa) and valve timings (maximum overlap and with the intake valve 20° retarded from the max overlap position) were examined. The swirl ratio (SR) and mean velocity (|V|) were calculated at BDC for every case in the mid-stroke plane and the fluctuation velocity (U') calculated for the 1500 rpm / 90 kPa / maximum overlap case. The in-cylinder velocities do not differ by the expected ratio of mean piston speed caused by differences in the engine stroke. The smaller engine was expected to have lower in-cylinder velocities and SRs due to a shorter stroke and lower piston speeds but instead has SR and |V| levels that are the same or higher than the larger engine.
Technical Paper

Pressure Reactive Piston Technology Investigation and Development for Spark Ignition Engines

Variable Compression Ratio (VCR) technology has long been recognized as a method of improving Spark Ignition (SI) engine fuel economy. The Pressure Reactive Piston (PRP) assembly features a two-piece piston, with a piston crown and separate piston skirt which enclose a spring set between them. The unique feature is that the upper piston reacts to the cylinder pressure, accommodating rapid engine load changes passively. This mechanism effectively limits the peak pressures at high loads without an additional control device, while allowing the engine to operate at high compression ratio during low load conditions. Dynamometer engine testing showed that Brake Specific Fuel Consumption (BSFC) improvement of the PRP over the conventional piston ranged from 8 to 18 % up to 70% load. Knock free full load operation was also achieved. The PRP equipped engine combustion is characterized by reverse motion of the piston crown near top dead center and higher thermal efficiency.
Technical Paper

Dynamometer Development Results for a Stratified-Charge DISI Combustion System

This report describes the dynamometer testing portion of the combustion system development of a direct-injection stratified-charge gasoline engine. The engine used in this study is a single-cylinder, direct-injection engine with a newly designed cylinder head comprised of 4-valves per cylinder, an intake-side-mounted DI fuel injector and a bowl-in-piston wall-guided stratified-charge combustion system. Test results detailed in this report include evaluation of four piston designs, two combustion chamber designs, and two injector spray angles. Tests were run at stratified-charge part-load, homogeneous-charge part-load, and WOT conditions. The program had aggressive goals in improving both WOT performance and part-load fuel economy while achieving Stage IV emission requirements. Tests results showed that the engine was able to meet these program goals.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
Technical Paper

Modeling of HCCI Combustion and Emissions Using Detailed Chemistry

To help guide the design of homogeneous charge compression ignition (HCCI) engines, single and multi-zone models of the concept are developed by coupling the first law of thermodynamics with detailed chemistry of hydrocarbon fuel oxidation and NOx formation. These models are used in parametric studies to determine the effect of heat loss, crevice volume, temperature stratification, fuel-air equivalence ratio, engine speed, and boosting on HCCI engine operation. In the single-zone model, the cylinder is assumed to be adiabatic and its contents homogeneous. Start of combustion and bottom dead center temperatures required for ignition to occur at top dead center are reported for methane, n-heptane, isooctane, and a mixture of 87% isooctane and 13% n-heptane by volume (simulated gasoline) for a variety of operating conditions.
Technical Paper

The Volume Acoustic Modes of Spark-Ignited Internal Combustion Chambers

Acoustic standing waves are excited in internal combustion chambers by both normal combustion and autoignition. The energy in these acoustic modes can be transmitted through the engine block and radiated as high-frequency engine noise. Using finite-element models of two different (four-valve and two-valve) production engine combustion chambers, the mode shapes and relative frequencies of the in-cylinder volume acoustic modes are calculated as a function of crank angle. The model is validated by comparison to spectrograms of experimental time-sampled waveforms (from flush-mounted cylinder pressure sensors and accelerometers) from these two typical production spark-ignited engines.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

Cylinder Head Thermo-Mechanical Fatigue Risk Assessment under Customer Usage

For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes through many different operating conditions such as cold start, through warm up, peak power, and intermediate cycles. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical fatigue (TMF) failure in combustion chamber and exhaust port. Cylinder heads having an integrated exhaust manifold are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer/bench thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. The bench test was used to verify the TMF analysis approach.
Technical Paper

Optical Methodology for Characterization of a Gasoline Direct Injection Closing Event Droplet Distribution

The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location are vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions [1]. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile [2]. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors is crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Investigation of a Ford 2.0 L Duratec for Touring Car Racing

This paper summarizes an investigative study done to evaluate the feasibility of a Ford Duratec engine in 2.0 L Touring Car Racing. The investigative study began in early 1996 due to an interest by British Touring Car Championship and North American Touring Car Championship sanctioning bodies to modify rules & demand the engine be production based in the vehicle entered for competition. The current Ford Touring Car entry uses a Mazda based V-6. This Study was intended to determine initial feasibility of using a 2.0 L Duratec V-6 based on the production 2.5L Mondeo engine. Other benefits expected from this study included; learning more about the Duratec engine at high speeds, technology exchange between a production and racing application, and gaining high performance engineering experience for production engineering personnel. In order to begin the Duratec feasibility study, an initial analytical study was done using Ford CAE tools.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.