Refine Your Search

Topic

Author

Search Results

Journal Article

Design Considerations for Hydrogen Management System on Ford Hydrogen Fueled E-450 Shuttle Bus

2009-04-20
2009-01-1422
As part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen as an alternative fuel option for vehicles with internal combustion engines since 1997. Ford has recently designed and built an Econoline (E-450) shuttle bus with a 6.8L Triton engine that uses gaseous hydrogen fuel. Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread public and commercial acceptance of hydrogen vehicles. Hazards and risks inherent in the application of hydrogen fuel to internal combustion engine vehicles are explained. The development of a Hydrogen Management System (H2MS) to detect hydrogen leaks in the vehicle is discussed, including the evolution of the H2MS design from exploration and quantification of risks, to implementation and validation of a working system on a vehicle. System elements for detection, mitigation, and warning are examined.
Technical Paper

High Temperature Stability of Ceria-Zirconia Supported Pd Model Catalysts

1998-02-23
980668
A series of ceria and ceria-zirconia supported Pd model automotive catalysts were prepared and aged under air or redox conditions at 1050°C for 12 h. The supports were manufactured by different methods and represent a range of compositions. The samples were characterized before and after aging by BET, X-ray diffraction, mercury porosimetry, XPS, H2 temperature-programmed reduction, and oxygen storage capacity measurements. Oxygen storage measurements revealed that the behavior of the catalysts varied according to aging conditions and temperature of measurement. Pd/ceria-zirconia catalysts showed higher oxygen storage characteristics after 1050°C aging than Pd/ceria catalysts, and the phase purity of the ceria-zirconia was shown to positively affect the amount of oxygen storage. The initial rates of oxygen release from the model catalysts at 350°C were shown to depend on the preparation conditions of the supports.
Technical Paper

Critical Engine Geometry Generation for Rapid Powertrain Concept Design Assessment

1998-02-23
981090
This paper presents some of the design rules used to calculate critical geometry of engine components, and the object-oriented component hierarchy system in PET. This paper also presents parametric solid model assembling schemes used to dynamically construct an assembly of whole powertrain systems. Some examples of powertrain concept design, such as the estimation of friction, packaging, and moving component clearances, will be presented. The computational efficiency of this concept design method will be compared to traditional methods also.
Technical Paper

An Integrated Design and Appraisal System for Vehicle Interior Packaging

2007-04-16
2007-01-0459
Static seating bucks have long been used as the only means to subjectively appraise the vehicle interior packages in the vehicle development process. The appraisal results have traditionally been communicated back to the requesting engineers either orally or in a written format. Any design changes have to be made separately after the appraisal is completed. Further, static seating bucks lack the flexibility to accommodate design iterations during the evolution of a vehicle program. The challenge has always been on how to build a seating buck quickly enough to support the changing needs of vehicle programs, especially in the early vehicle development phases. There is always a disconnect between what the seating buck represents and what is in the latest design (CAD), since it takes weeks or months to build a seating buck and by the time it is built the design has already been evolved. There is also no direct feedback from seating buck appraisal to the design in CAD.
Technical Paper

Development of a New Oxygen Storage Model for SIMTWC

2007-04-16
2007-01-1081
The high conversion efficiency required by the modern three-way catalyst (TWC) is dependent on oxygen storage material functionality and capacity. To successfully model a TWC, it is critical that the oxygen storage function in the catalyst be adequately represented. The original oxygen storage model (a simple “bucket” model) included in one of Ford's TWC models, SIMTWC, was developed for vehicle programs meeting LEV emission standards. Application of SIMTWC to test data from vehicles targeting more stringent emission standards, such as ULEV and PZEV, revealed limitations in the accuracy of the original bucket model. To address these limitations, an improved kinetic model of oxygen storage is being developed. This new model is more kinetically-detailed than the old model.
Technical Paper

A Multi-Variable Regression Model for Ergonomic Lifting Analysis with Digital Humans

2008-06-17
2008-01-1909
The Snook tables (Liberty Mutual Tables) are a collection of data sets compiled from studies based on a psychophysical approach to material-handling tasks. These tables are used to determine safe loads for lifting, lowering, carrying pulling, and pushing. The tables take into account different population percentiles, gender, and frequency of activity. However, while using these tables to analyze a work place, Ergonomists often have to select from discrete data points closest to the actual work place parameters thereby reducing accuracy of results. To compound the problem further, multiple interrelated variables are involved, making it difficult to analyze parameters intuitively. For example, it can be difficult to answer questions such as, does reducing the lifting height lower the recommended lifting weight, if the lifting distance is increased? To resolve such issues, this paper presents a new methodology for implementing the Snook tables using multi variable regression.
Technical Paper

Influence of Hydrocarbon Storage on the Durability of SCR Catalysts

2008-04-14
2008-01-0767
Selective catalytic reduction (SCR) is a technology capable of meeting Tier 2 Bin 5 emissions levels of oxides of nitrogen (NOX) for diesel engines. Base metal zeolite catalysts show the best combination of thermal durability and NOX conversion activity. It is shown in this work that some base metal zeolite catalysts can store high levels of hydrocarbons (HCs). Also, base metal zeolite catalysts can catalyze oxidation of HCs under certain conditions. Oxidation of stored hydrocarbons can lead to permanent catalyst deactivation due to the exotherm generated in the SCR catalyst (over-temperature condition leading to SCR catalyst damage). This paper discusses a laboratory bench test to characterize hydrocarbon storage and burn-off characteristics of several SCR catalyst formulations, as well as engine dynamometer tests showing hydrocarbon storage and exotherm generation.
Technical Paper

The Use of Discrete Wavelet Transform in Road Loads Signals Compression

2009-10-06
2009-36-0238
Wavelets are a powerful mathematical tool used to multi-resolution time-frequency decomposition of signals, in order to analyze them in different scales and obtain different aspects of the information. Despite being a relatively new tool, wavelets have being applied in several areas of human knowledge, especially in signal processing, with emphasis in encoding and compression of image, video and audio. Based on a previous successful applications (FRAZIER, 1999) together a commitment to quality results, this paper evaluates the use of the Discrete Wavelet Transform (DWT) as an compression algorithm to reduce the amount of data collected in road load signals (load history) which are used by the durability engineering teams in the automotive industry.
Technical Paper

Experimental Study of Automotive Heat Shield Geometry with Natural Convection and Radiation Boundary Conditions

2001-05-14
2001-01-1746
Shielding a vehicle underbody is becoming a daunting task with increased exhaust temperatures due to emissions regulations and ever-increasing packaging constraints, which place components ever closer to exhaust systems. This experimental study was initiated to evaluate the two dimensional thermal effects of heat shield flange height and shield width in vehicle underbody idle conditions. The ultimate goal of this study is to develop a function to optimize the shape of heat shielding to achieve a specified floorpan temperature during vehicle idle conditions.
Technical Paper

Minimizing Supply Chain Impact in a Synchronous Build Operation: Optimizing Buffer Size

2002-07-09
2002-01-2111
Automotive operations experience substantial financial losses when any one item, from a set of vehicle-specific sequenced parts, is unavailable. Justifying the appropriate buffer size using “heuristics” is increasingly difficult as “lean” advocates push for smaller inventories. One costly scenario is the painted body buffer in operations where the sequence of parts for final assembly is determined prior to the start of the paint process. To provide an objective methodology for determining buffer building capacity and target fill level, we developed a cost optimization model. This demonstrates, graphically, the criticality of proper buffer sizes and the cost effectiveness of designing the final assembly operations with the capability of short-term storage for a small amount (2 - 10) of sequenced parts, when the expected painted body is not available. The model is easily modified to suit a particular situation, by revising the input parameters to more appropriate values.
Technical Paper

The Effect of Ceria Content on the Performance of a NOx Trap

2003-03-03
2003-01-1160
A study was performed on a lean NOx trap in which the loading of a ceria-containing mixed oxide in the washcoat was varied. After a mild stabilization of the traps, the time required to purge the NOx trap generally increased with increasing amount of mixed oxide. The purge NOx release also increased with increasing mixed oxide level but was greatly diminished after thermal aging. The sulfur tolerance of the NOx trap improved as the mixed oxide content was increased from 0% to 37%. The sample with 0% mixed oxide was more difficult to desulfate than the other samples due to poor water-gas-shift capability. After thermal aging, the NOx reduction efficiency on a 60 second lean/5 second rich cycle was highest for the samples with 0% to 37% mixed oxide at evaluation temperatures of 400°C to 500°C.
Technical Paper

The Use of Subjective Jury Evaluations for Interior Acoustic Packaging

2003-05-05
2003-01-1506
Unweighted dB, dB(A), and Articulation Index do not always accurately identify the sound quality of vehicle interior noise. This paper attempts to determine the relevance of sound quality in interior automotive acoustics. Traditionally, overall dB(A) levels have been the driving factor, along with cost, in selecting an interior automotive acoustic package. In this paper, we make use of subjective jury evaluations to compare perceptions of various interior acoustic packages and compare these results to objective values. These values include, but are not restricted to, dB, dB(A), and Articulation Index. Considerations are made as to whether differences between packages can be perceived by customers. This paper also attempts to show that subjective evaluations can differ with the standard metrics used to select acoustic packages and describe why such evaluations might be important in acoustic package selection.
Technical Paper

MyFord Dock Development

2017-03-28
2017-01-1694
Demand for enhanced infotainment systems with features like navigation, real-time traffic, music streaming service, mirroring and others is increasing, forcing automakers to develop solutions that fulfill customer needs. However, many of those systems are too expensive to be fitted to an entry-level vehicle leaving a gap in the market that fails customer’s expectation. This gap is usually filled by a smartphone which may have all the features the customer wants but in many cases it cannot be properly fitted in the vehicle due to lack of specific storage space. This paper describes how the engineering team developed an innovative, flexible and effective solution that holds a smartphone in an ergonomic location.
Technical Paper

High Frequency Sloshing - Energy Dissipation and Viscous Damping through CFD

2017-03-28
2017-01-1317
Liquid sloshing is an important issue in ground transportation, aerospace and automotive applications. Effects of sloshing in a moving liquid container can cause various issues related to vehicle stability, safety, component fatigue, audible noise and, liquid level measurement. The sloshing phenomenon is a highly nonlinear oscillatory movement of the free-surface of liquid inside a container under the effect of continuous or momentarily excitation forces. These excitation forces can result from sudden acceleration, braking, sharp turning or pitching motions. The sloshing waves generated by the excitation forces can impact on the tank surface and cause additional vibrations. For the loads with the frequencies between 2 to 200 Hz, the structural fatigue failure is a major concern for automotive applications.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

Freeze Protection of Onboard Urea Co-Fueling System

2006-04-03
2006-01-0645
The urea co-fueling approach to refilling a urea storage container onboard a vehicle is based on the design of a two-fluid dispensing nozzle. With a single refueling operation the nozzle enables an independent delivery of two fluids, diesel fuel and urea, into two separate containers. The person refueling the vehicle needs no new skills or knowledge. But most importantly, the co-fueling method eliminates a separate and a critical action of keeping up with timely refills of the urea as the condition for emissions compliance for the vehicle. However, freezing of aqueous solution of urea below -11.5°C puts additional demands on the design of the two-fluid nozzle and the vehicle fill pipe receptacle, so that a reliable co-fueling process is assured at these cold weather conditions. The paper describes the methods that prevent formation of ice in the co-fueling fill pipe, which would enable refilling of urea during continuous use of the vehicle at temperatures below urea freezing point.
Technical Paper

A Generic Teaching Case Study for Teaching Design for Six Sigma

2006-04-03
2006-01-0501
There are several reasons why it can be daunting to apply Six Sigma to product creation. Foremost among them, the functional performance of new technologies is unknown prior to starting a project. Although, Design For Six Sigma (DFSS) was developed to overcome this difficulty, a lack of applicable in-class case studies makes it challenging to train the product creation community. The current paper describes an in-class project which illustrates how Six Sigma is applied to a simulated product creation environment. A toy construction set (TCS) project is used to instruct students how to meet customer expectations without violating cost, packaging volume and design-complexity constraints.
Technical Paper

The Aerodynamic Development of the Probe IV Advanced Concept Vehicle

1983-06-06
831000
The aerodynamic development and characteristics of a four-passenger advanced concept automobile are described. An overview of the areas of the vehicle design which were dealt with to obtain a drag coefficient value of 0.153 is provided. The interior packaging philosophy is outlined which led to the potential for packaging four to six passengers within an extremely low drag automobile. Parametric shape studies of the major surface design elements are documented from the contributing development testing. The particular design treatments adopted and the rationale behind the choice of design are examined for each of the aerodynamically-sensitive areas of the vehicle. Examinations of the unique solutions to vehicle cooling, ramp and curb clearance, front wheel skirting and vehicle attitude are presented. Full scale wind tunnel data is shown for the configurations examined and vehicle stability parameters compared with conventional vehicles.
Technical Paper

Container Deformation Procedure for Ceramic Monolith Catalytic Converters

2000-03-06
2000-01-0217
A typical automotive catalytic converter is constructed with a ceramic substrate and a steel shell. Due to a mismatch in coefficients of thermal expansion, the steel shell will expand away from the ceramic substrate at high temperatures. The gap between the substrate and shell is usually filled with a fiber composite material referred to as “mat.” Mat materials are compressed during assembly and must maintain an adequate pressure around the substrate under extreme temperature conditions. The container deformation measurement procedure is used to determine catalytic converter shell expansion during and after a period of hot catalytic converter operation. This procedure is useful in determining the potential physical durability of a catalytic converter system, and involves measuring converter shell expansion as a function of inlet temperature. A post-test dimensional measurement is used to determine permanent container deformation.
X