Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

First One-Piece, Injection-Molded Thermoplastic Front-Bumper System for a Light Truck

1998-02-23
980107
The first single-piece, injection-molded, thermoplastic, front bumper for a light truck provides improved performance and reduced cost for the 1997 MY Explorer® Ltd. and 1988 MY Mountaineer® truck from Ford Motor Company. Additionally, the system provides improved impact performance, including the ability to pass 5.6 km/hr barrier impact tests without damage. Further, the advanced, 1-piece design integrates fascia attachments, reducing assembly time, and weighs 8.76 kg/bumper less than a baseline steel design. The complete system provides a cost savings vs. extruded aluminum and is competitive with steel bumpers.
Technical Paper

Abusive Testing of Thermoplastic vs. Steel Bumpers Systems

1998-02-23
980106
Over the last decade, on small- and medium-size passenger cars, a new class of front bumper - injection or blow molded from engineering thermoplastics - has been put into production use. These bumper systems provide full 8-km/hr federal pendulum and flat-barrier impact protection, as well as angled barrier protection. Thermoplastic bumpers, offering weight, cost, and manufacturing advantages over conventional steel bumper systems, also provide high surface finish and styling enhancements. However, there remain questions about the durability and engineering applicability of thermoplastic bumper systems to heavier vehicles. This paper presents results of a preliminary study that examines the durability of thermoplastic bumpers drawn from production lots for much lighter compact, and mid-size passenger cars against baseline steel bumper systems currently used on full-size pickup truck and sport-utility vehicles (SUVs). Bumpers were subjected to U.S.
Technical Paper

Field Performance and Repair of Thermoplastic Exterior Body Panel Systems

1990-02-01
900291
Thermoplastic body panels are emerging in the industry as automotive manufacturers seek to design for advanced aerodynamic styling, lower weight, and cost effective vehicles. To best exhibit the advantages of GE thermoplastic resins in these applications, an extensive study has been completed to demonstrate the impact performance of thermoplastic body panels in the field based on the current success with the Buick LeSabre T-Type, Buick Reatta, and the Cadillac Deville and Fleetwood models using NORYL GTX® 910 resin fenders. This study provides a “real life” scenario of the advantages of thermoplastics compared to steel in body panel applications.
Technical Paper

Towards Improved Halogen Lighting Performance using a Combination of High Luminous Flux Sources and a Lens Material Approach

2004-03-08
2004-01-0797
Currently, automobile manufacturers receive automotive headlamp assemblies from headlamp manufacturers with outer lenses produced of clear or slightly blue tinted polycarbonate. Such headlamp designed to provide optimized light output have very similar aesthetics, and leave little room to differentiate one car platform from another, using the outer lens color. With edge glow technology a car manufacturer can provide an appealing aesthetic look (edge glow effect) from the outer lens. Additionally, this technology can be used to improve the quality of the beam color emitted through the outer lens. Dependent on the chosen combination of halogen source and lens formulation, a range of beam colors spanning from halogen to HID is attainable, where the beam pattern and color continue to conform to the applicable SAE and ECE beam photometry and color standards and regulations.
Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

Use of Parametric Modeling in the Development of Energy Absorber Applications

2002-03-04
2002-01-1226
Automotive styling and performance trends continue to challenge engineers to develop cost effective bumper systems that can provide efficient energy absorption and also fit within reduced package spaces. Through a combination of material properties and design, injection-molded engineering thermoplastic (ETP) energy absorption systems using polycarbonate/polybutylene terephthalate (PC/PBT) alloys have been shown to promote faster loading and superior energy absorption efficiency than conventional foam systems. This allows the ETP system to provide the required impact protection within a smaller package space. In order to make optimal use of this efficiency, the reinforcing beam and energy absorber (EA) must be considered together as an energy management system. This paper describes the development of a predictive tool created to simplify and shorten the process of engineering efficient and cost effective beam/EA energy management systems.
Technical Paper

Application of a MIC Metallic Flake ASA/PC Weatherable Resin Predictive Engineering Package

2006-04-03
2006-01-0135
The automotive industry continues to strive for mold-in-color (MIC) solutions that can provide metallic flake appearances. These MIC solutions can offer a substantial cost out opportunity while retaining a balance of weathering performance and physical properties. This paper discusses a predictive engineering package used to hide, minimize and eliminate flow lines. Material requirements and the methods used to evaluate flowline reduction and placement for visual inspection criteria are detailed. The Nissan Quest® luggage-rack covers are used to illustrate this application. The paper also explores how evolving predictive packages offer expanding possibilities.
Technical Paper

Integrated Energy-Management Systems:Market Trends, OEM Needs, & Business Opportunities for the Tier 1 Community

1998-02-23
980110
Recent vehicle design trends require bumper systems to be crashworthy under more demanding circumstances, e.g. tighter package space, heavier vehicle mass, and wider rail spans. Meanwhile, pressure to reduce cost and weight of bumpers continues at a time when roles in the supplier community are changing. These factors have combined to increase the importance of optimizing bumper design and material properties for specific platforms. Materials suppliers have responded by developing a range of specialized engineering thermoplastic (ETP) resins that can help meet increasing performance requirements yet also offer the potential for improved manufacturing productivity, significant weight savings, and systems cost reductions. Material suppliers have also increased the level of technical design support provided to OEMs and 1st Tier suppliers.
Technical Paper

Energy-Absorbing Thermoplastics for Head Impact Applications

1996-02-01
960154
The August 1996 expansion of FMVSS 201 established head impact performance criteria for upper interior components This standard has forced automotive manufacturers, designers, and suppliers to change their thinking for interiors, especially pillars, compliance with FMVSS 201 will require new, structural designs and energy-absorbing materials An ongoing study has examined the implications of FMVSS 201 and its effect on pillars The results of this study have demonstrated how energy-absorbing engineering thermoplastics can be used to meet and exceed the requirements of the head impact legislation through single-piece pillar trims
Technical Paper

Trends Driving Design and Materials Changes in the Instrument Panel System

1997-02-24
970445
The instrument panel (IP) is one of the largest, most complex, and visible components of the vehicle interior, and like most other major systems in passenger cars and light trucks, it has undergone considerable aesthetic and functional changes over the past decade. This is because a number of design, engineering, and manufacturing trends have been driving modifications in both the role of these systems and the materials used to construct them since the mid- '80s. This paper will trace the recent evolution of IP systems in terms of the trends affecting both design and materials usage. Specific commercial examples will be used to illustrate these changes.
Technical Paper

A Structural Instrument Panel from Glass-Mat Thermoplastic for the Small-Car Market

1997-02-24
970726
Designers and engineers encounter many challenges in developing vehicles for the small-car market. They face constant pressure to reduce both mass and cost while still producing vehicles that meet environmental and safety requirements. At the same time, today's discriminating consumers demand the highest quality in their vehicles. To accommodate these challenges, OEMs and suppliers are working together to improve all components and systems for the high-volume small-car market. An example of this cooperative effort is a project involving an integrated structural instrument panel (IP) designed to meet the specific needs of the small-car platform. Preliminary validation of the IP project, which uses a compression-molded, glass-mat-thermoplastic (GMT) composite and incorporates steel and magnesium, indicates it will significantly reduce part count, mass, assembly time, and overall cost.
X