Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Electric Traction Motors for Cadillac CT6 Plugin Hybrid-Electric Vehicle

2016-04-05
2016-01-1220
The Cadillac CT6 plug-in hybrid electric vehicle (PHEV) power-split transmission architecture utilizes two motors. One is an induction motor type while the other is a permanent magnet AC (PMAC) motor type referred to as motor A and motor B respectively. Bar-wound stator construction is utilized for both motors. Induction motor-A winding is connected in delta and PMAC motor-B winding is connected in wye. Overall, the choice of induction for motor A and permanent magnet for motor B is well supported by the choice of hybrid system architecture and the relative usage profiles of the machines. This selection criteria along with the design optimization of electric motors, their electrical and thermal performances, as well as the noise, vibration, and harshness (NVH) performance are discussed in detail. It is absolutely crucial that high performance electric machines are coupled with high performance control algorithms to enable maximum system efficiency and performance.
Journal Article

Electric Motor Design of General Motors’ Chevrolet Bolt Electric Vehicle

2016-04-05
2016-01-1228
A permanent magnet synchronous motor (PMSM) motor is used to design the propulsion system of GM’s Chevrolet Bolt battery electric vehicle (BEV). Magnets are buried inside the rotor in two layer ‘V’ arrangement. The Chevrolet Bolt BEV electric machine rotor design optimizes the magnet placement between the adjacent poles asymmetrically to lower torque ripple and radial force. Similar to Chevrolet Spark BEV electric motor, a pair of small slots are stamped in each rotor pole near the rotor outer surface to lower torque ripple and radial force. Rotor design optimizes the placement of these slots at different locations in adjacent poles providing further reduction in torque ripple and radial force. As a result of all these design features, the Chevrolet Bolt BEV electric motor is able to meet the GM stringent noise and vibration requirements without implementing rotor skew, which (rotor skew) lowers motor performance and adds complexity to the rotor manufacturing and hence is undesirable.
X