Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

General Motors Electric Variable Transmission for Cadillac CT6 Sedan

An all-new electric variable transmission (EVT) developed by General Motors for rear-wheel-drive products is at the center of the plug-in hybrid electric vehicle (PHEV) propulsion system for the Cadillac CT6. This transmission includes two integrated electric motors, planetary gearing, and hydraulic clutches. It is capable of power-split-hybrid operation in continuously variable transmission (CVT) ratio ranges, parallel-hybrid operation in fixed gear ratios, and all-electric propulsion in different ratio combinations. Transmission operation, mechanical design, controls design, motor design, and output capability are explained, and simulation results used as the benchmark for final development are included. All-electric launch and driving, selectable regeneration, and power blending with the turbocharged engine provide smooth and seamless propulsion through the entire driving range.
Technical Paper

The GM RWD PHEV Propulsion System for the Cadillac CT6 Luxury Sedan

This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
Journal Article

Design of the Chevrolet Bolt EV Propulsion System

Building on the experience of the Chevrolet Spark EV battery electric vehicle, General Motors (GM) has developed a propulsion system with increased capability for its next generation Chevrolet Bolt EV. It propels a new larger electric vehicle with significantly greater electric driving range. Through extensive analysis the primary propulsion system components, which include the drive unit, traction electric motor, power electronics, energy storage, and on-board charging module, were optimized individually and as an integrated system to deliver improvements in propulsion system energy, power, torque and efficiency. The results deliver outstanding EV range and fun-to-drive acceleration performance.