Refine Your Search

Topic

Author

Search Results

Journal Article

Gossip Networks: The Enabler for Sparsely Populated VANETs

2011-04-12
2011-01-0046
The future deployment of safety-oriented Dedicated Short Range Communications (DSRC) technology may be hindered due to the so-called “Market Penetration” problem: as a wireless network built from scratch, there is lack of value to consumers who are early adopters. In this paper, we explore potential applications that can be supported during the initial phase of vehicular ad-hoc network (VANET) deployment, i.e., sparsely populated VANETs. We show that delay-insensitive information sharing applications are promising since they only require opportunistic network connections (in contrast to safety applications that require “always on” connectivity). This is done via “gossip spread” information distribution protocols by which DSRC vehicles cache and then exchange the information while in range of other DSRC vehicles or road side units. This approach is especially attractive since the number of communicating vehicles will be very small during early deployment years.
Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Journal Article

The Effect of Surface Finish on Aluminum Sheet Friction Behavior

2011-04-12
2011-01-0534
Aluminum sheet is commercially available in three surface finishes, mill finish (MF), electric discharge texture (EDT), and dull finish (DF). This surface finish impacts the friction behavior during sheet metal forming. A study was done to compare ten commercially available sheet samples from several suppliers. The friction behavior was characterized in the longitudinal and transverse directions using a Draw Bead Simulator (DBS) test, resulting in a coefficient of friction (COF) value for each material. Characterization of the friction behavior in each direction provides useful data for formability analysis. To quantitatively characterize the surface finish, three-dimensional MicroTexture measurements were done with a WYKO NT8000 instrument. In general, the MF samples have the smoothest surface, with Sa values of 0.20-0.30 μm and the lowest COF values. The EDT samples have the roughest surface, with Sa values of 0.60-1.00 μm, and the highest COF values.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Development of a Camera-Based Forward Collision Alert System

2011-04-12
2011-01-0579
Forward Collision Alert (or Forward Collision Warning) systems provide alerts intended to assist drivers in avoiding or mitigating the harm caused by rear-end crashes. These systems currently use front-grille mounted, forward-looking radar devices as the primary sensor. In contrast, Lane Departure Warning (LDW) systems employ forward-looking cameras mounted behind the windshield to monitor lane markings ahead and warn drivers of unintended lane violations. The increasing imaging sensor resolution and processing capability of forward-looking cameras, as well recent important advances in machine vision algorithms, have pushed the state-of-the-art for camera-based features. Consequently, camera-based systems are emerging as a key crash avoidance system component in both a primary and supporting sensing role. There are currently no production vehicles with cameras used as the sole FCA sensing device.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

FMVSS126 Electronic Stability Control Sine With Dwell Incomplete Vehicle Type 2 Analysis

2011-04-12
2011-01-0956
Incomplete vehicles are partially manufactured by an Original Equipment Manufacturer (OEM) and subsequently sold to and completed by a final-stage manufacturer. Section S8.8, Final-Stage Manufacturers and Alterers, of Federal Motor Vehicle Safety Standard (FMVSS) 126 states “Vehicle that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with Part 567 of this chapter, are not subject to the requirements of S8.1 through S8.5. Instead, all vehicles produced by these manufacturers on or after September 1, 2012, must comply with this standard.” The FMVSS 126 compliance of the completed vehicle can be certified in three ways: by the OEM provided no alterations are made to identified components (TYPE 1), conditionally by the OEM provided the final-stage manufacturer follows specific guidelines (TYPE 2), or by the final-stage manufacturer (TYPE 3).
Journal Article

Liquid and Vapor Envelopes of Sprays from a Multi-Hole Fuel Injector Operating under Closely-Spaced Double-Injection Conditions

2012-04-16
2012-01-0462
Liquid and vapor envelopes of sprays from a multi-hole fuel injector operating under closely-spaced double-injection conditions were investigated using a combination of high-speed schlieren and Mie scattering imaging. The effects of mass split ratio and dwell time between injections on liquid and vapor penetration have been investigated under engine-like pressures and temperatures. For the conditions evaluated, the results indicate that closely-spaced double-injection generally reduces liquid and vapor penetration.
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Journal Article

Development of Additional SAE J2643 Standard Reference Elastomers

2011-04-12
2011-01-0017
The first set of SAE J2643 Standard Reference Elastomers (SRE) was developed in 2004. It was composed of a group of 10 compounds covering multiple elastomer families. Since then, more advanced materials from many elastomer families have been introduced to the automotive industry. The purpose of this study is to add a few more reference compounds to SAE J2643, to enhance the portfolio on FKM, AEM and ACM to reflect advancements in elastomer technology, and make it suitable for a variety of fluids, such as transmission fluid and engine oil. Fourteen standard elastomer compounds were involved in this study, covering various materials currently used in automotive powertrain static and dynamic sealing applications. Participants include OEMs, major rubber manufacturers, a fluid additive company and an independent lab. Manufacturers of each test compound provided formulations, designated ingredients from defined sources, and detailed mixing and molding procedures.
Technical Paper

Empirical-Numerical Simulation Technique for Improving the Quality of Rolled Rods by Roll Pass Design

1992-02-01
920783
Improper roll pass designs can lead to either underfill which results in the formation of hairline cracks on the surface of the finished bars or overfill which results in roll overloading and the formation of fins. Therefore to reduce downtime, and improve yield and quality, it becomes important to design an acceptable roll pass in reasonable time. This paper presents a methodology for roll pass design which uses a three dimensional finite element technique along with an empirical procedure to arrive at an iterative scheme for reducing the number of passes and improving metal flow in the passes. This methodology is applied to improving an existing seven pass square - to - round rolling sequence, resulting in the reduction of the number of passes and improved distributions of effective strains in the rolled product.
Technical Paper

Understanding CAE Needs for Data on Plastics - A Materials Engineer's Perspective

2011-04-12
2011-01-0015
Delivering the appropriate material data for CAE analysis of plastic components is not as straight forward as it would seem to be. While a few of the properties typically used by resin manufacturers and material engineers to describe a plastic are useful to the analysis community (density, CLTE), most are not (flexural modulus, notched izod). In addition some properties such as yield stress are defined differently by the analysis community than by the materials community. Lastly, secondary operations such as painting or chrome plating significantly change the behavior of components with plastic substrates. The materials engineering community and the CAE analysis community must work together closely to develop the material data necessary to increase the capability of the analysis. This paper will examine case studies where these issues have required modifications to the material property data to increase the fidelity of the CAE analysis.
Technical Paper

Co-Development of Chevy Volt Tire Properties to Balance Performance and Electric Vehicle Range

2011-04-12
2011-01-0096
As an innovative electric vehicle with some new approaches to energy usage and vehicle performance balance, the Chevy Volt required a special relationship between the OEM and tire supplier community. This paper details this relationship and how advanced tools and technology were leveraged between OEM and supplier to achieve tire component and overall vehicle performance results.
Technical Paper

Modeling and Analysis of Electromagnetic Coupling Between Electric Propulsion System Components

2011-04-12
2011-01-0756
The engineering of electric propulsion systems requires time and cost efficient methodologies to determine system characteristics as well as potential component integration issues. A significant part of this analysis is the identification of the electromagnetic fields present in the propulsion system. Understanding of the electromagnetic fields during system operation is a significant design consideration due to the use of components that require large current(s) and high voltage(s) in the proximity of other control system items (such as sensors) that operate with low current(s) and voltage(s). Therefore, it is critical to quantify the electromagnetic fields produced by these components within the design and how they may interact with other system components. Often overlooked (and also extremely important) is an evaluation of how the overall system architecture can generate or react to electromagnetic fields (which may be a direct result of packaging approaches).
Technical Paper

Effects of Thickness on Headliner Material Properties

2011-04-12
2011-01-0463
Headliner material plays an important role in occupant protection in situations involving head impact into the interior vehicle roof area. Accurate characterization of its mechanical properties is therefore extremely important for prediction of its behavior during interior impact assessment of a vehicle. Headliner material typically consists of two main layers: the substrate layer which provides structural integrity and impact protection, and the fabric-foam layer which provides proper interior fit and appearance. Both layers vary significantly in thickness and composition between different manufacturers. This paper investigates effects of the layer thickness on compressive strength and deformation of several different headliner materials.
Technical Paper

Factors Moderating the Effectiveness of Rear Vision Systems: What Performance-Shaping Factors Contribute to Drivers' Detection and Response to Unexpected In-Path Obstacles When Backing?

2011-04-12
2011-01-0549
General Motors (GM) and the Virginia Tech Transportation Institute (VTTI) have partnered to conduct a series of studies characterizing the use and effectiveness of technologies designed to assist drivers while backing. A major emphasis of this research has been on Rear Vision Camera (RVC) systems that provide drivers with an enhanced view of the area behind the vehicle. RVC systems are intended to aid in positioning the vehicle when executing low-speed parking and backing-related tasks and are not necessarily well suited for detecting unexpected in-path obstacles (particularly if the RVC image is not coupled with object detection alerts issued to the driver).
Technical Paper

Quantifying Enclosed Space and Cargo Volume

2011-04-12
2011-01-0781
Industry standards and practices define a number of mathematical and physical methods to estimate the cargo carrying volume capacity of a vehicle. While some have roots dating back decades, others try to assess the utility of the space for cargo by subjective measurements. Each these methods have their own inherent merits and deficiencies. The purpose of this paper is to highlight the differences in calculated cargo volume amongst the following practices: Society of Automobile Engineers (SAE) J1100[1] International Organization for Standardization (ISO 3832)[2], Global Car manufacturer's Information Exchange group (GCIE)[3], Consumer Reports[4]. This paper provides a method and associated rationale for constructing a new cargo volume calculation practice that attempts to harmonize these procedures into a more contiguous practice. This homologation will benefit publishing industry, vehicle manufacturers and customers alike.
Technical Paper

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-04-12
2011-01-1004
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Technical Paper

Effects of Base Stocks on Lubricant Aeration

2011-04-12
2011-01-1210
Aeration properties of lubricants is an increasing concern as the design of powertrain components, specifically transmissions, continue to become more compact leading to smaller sumps and higher pressure requirements. Although good design practices are the most important factors in mitigating the aeration level of the fluid, the fluid properties themselves are also a contributing factor. This paper investigates the aeration properties of specific base oils commonly used to formulate modern transmission fluids using the General Motors Company Aeration Bench Test found in GMN10060. The test matrix includes thirteen different fluids representing a cross-section of base oil types, manufacturers, and viscosity grades. Per the procedure found in GMN10060, the bench test measures the aeration time, de-aeration time, and percent maximum aeration of the fluid at three temperatures, 60°C, 90°C, and 120°C. In the end, the results are compared with four commercially available transmission fluids.
X