Refine Your Search

Topic

Author

Search Results

Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Development and Validation of a Mean Value Engine Model for Integrated Engine and Control System Simulation

2007-04-16
2007-01-1304
This paper describes the development of a mean value model for a turbocharged diesel engine. The objective is to develop a fast-running engine model with sufficient accuracy over a wide range of operating conditions for efficient evaluation of control algorithms and control strategies. The mean value engine model was derived from a detailed 1D engine model, using the Design of Experiments (DOE) and hybrid Radial Basis Functions (RBF) to approximate the simulation results of the detailed model for cylinder quantities (e.g., the engine volumetric efficiency, the indicated efficiency, and the energy fraction of the exhaust gas). Furthermore, the intake and exhaust systems (especially intake and exhaust manifolds) were completely simplified by lumping flow components together. In addition, to compare with hybrid RBF, neural networks were also used to approximate the simulation results of the detailed engine model.
Technical Paper

Effects of Substrate Diameter and Cell Density FTP Performance

2007-04-16
2007-01-1265
An experiment was performed with a 1.3L catalytic converter design containing a front and rear catalyst each having a volume of 0.65 liters. This investigation varied the front catalyst parameters to study the effects of 1) substrate diameter, 2) substrate cell density, 3) Pd loading and 4) Rh loading on the FTP emissions on three different vehicles. Engine displacement varied from 2.4L to 4.7L. Eight different converters were built defined by a Taguchi L-8 array. Cold flow converter restriction results show the tradeoff in converter restriction between substrate cell density and substrate diameter. Vehicle FTP emissions show how the three vehicles are sensitive to the four parameters investigated. Platinum Group Metals (PGM) prices and Federal Test Procedure (FTP) emissions were used to define the emission value between the substrate properties of diameter and cell density to palladium (Pd) and rhodium (Rh) concentrations.
Technical Paper

Future Truck Steering Effort Optimization

2007-04-16
2007-01-1155
In an endeavor to improve upon historically subjective and hardware-based steering tuning development, a team was formed to find an optimal and objective solution using Design For Six Sigma (DFSS). The goal was to determine the best valve assembly design within a hydraulic power-steering assist system to yield improved steering effort and feel robustness for all vehicle models in a future truck program. The methodology utilized was not only multifaceted with several Design of Experiments (DOEs), but also took advantage of a CAE-based approach leveraging modeling capabilities in ADAMS for simulating full-vehicle, On-Center Handling behavior. The team investigated thirteen control factors to determine which minimized a realistic, compounded noise strategy while also considering the ideal steering effort function (SEF) desired by the customer. In the end, it was found that response-dependent variability dominated the physics of our valve assembly design concept.
Technical Paper

Numerical Investigation of Recompression and Fuel Reforming in a SIDI-HCCI Engine

2007-07-23
2007-01-1878
Homogeneous Charge Compression Ignition (HCCI) is a combustion concept which has the potential for efficiency comparable to a DI Diesel engine with low NOx and soot emissions. However, HCCI is difficult to control, especially at low speeds and loads. One way to assist with combustion control and to extend operation to low speed and loads is to close the exhaust valve before TDC of the exhaust stroke, trapping and recompressing some of the hot residual. Further advantages can be attained by injecting the fuel into this trapped, recompressed mixture, where chemical reactions occur that improve ignitability of the subsequent combustion cycle. Even further improvement in the subsequent combustion cycle can be achieved by applying a spark, leading to a spark-assisted HCCI combustion concept.
Technical Paper

Tank-to-Wheels Preliminary Assessment of Advanced Powertrain and Alternative Fuel Vehicles for China

2007-04-16
2007-01-1609
Well-to-Wheels analyses are important tools that provide a rigorous examination and quantify the environmental burdens associated with fuel production and fuel consumption during the vehicle use phase. Such assessments integrate the results obtained from the Well-to-Tank (WtT) and the Tank-to-Wheels (TtW) analysis components. The purpose of this study is to provide a preliminary Tank-to-Wheels assessment of the benefits associated with the introduction of alternative powertrains and fuels in the Chinese market by the year 2015 as compared to the results obtained with conventional internal combustion engine vehicles (ICEVs). An emphasis is given on the vehicles powered by those fuels that have the potential to play a major role in the Chinese auto-sector, such as: M10, M85, E10, E85, Di-methyl Ether (DME) and Coal-to-Liquids (CTL). An important conclusion of this report is that hybridization reduces fuel consumption in all propulsion systems.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

The Steering Characterizing Functions (SCFs) and Their Use in Steering System Specification, Simulation, and Synthesis

2001-03-05
2001-01-1353
A set of functions for characterizing the mechanical properties of a steering “short gear” is described. They cover the kinematic, stiffness, assist, and friction performance of a power assisted (or manual) steering gear from the input shaft to the inner ends of the tie rods. Their use in describing the performance of a generalized steering gear is described. They have particular application to describing the steering feel performance of a vehicle. They can be used to specify the steering subsystem performance for desired steering feel for a given vehicle. They can also be used for experimental characterization of steering subsystems, can be used in vehicle dynamics simulations, and can be synthesized from a set of vehicle level performance targets. Along with their description, their use in simulation and methods to synthesize their values are described.
Technical Paper

Assessment of a Vehicle Concept Finite-Element Model for Predicting Structural Vibration

2001-04-30
2001-01-1402
A vehicle concept finite-element model is experimentally assessed for predicting structural vibration to 50 Hz. The vehicle concept model represents the body structure with a coarse mesh of plate and beam elements, while the suspension and powertrain are modeled with a coarse mesh of rigid-links, beams, and lumped mass, damping, and stiffness elements. Comparisons are made between the predicted and measured frequency-response-functions (FRFs) and modes of (a) the body-in-white, (b) the trimmed body, and (c) the full vehicle. For the full vehicle, the comparisons are with a comprehensive set of measured FRFs from 63 tests of nominally identical vehicles that demonstrate the vehicle-to-vehicle variability of the measured FRF response.
Technical Paper

Lean NOx Trap for Heavy-Duty On-Road Applications - A Feasible Alternative?

2007-10-30
2007-01-4179
The implementation and development efforts of lean NOx trap catalysts for heavy-duty applications decreased a number of years ago. Most heavy-duty engine manufacturers realized that the system complexity as well as the durability of such a system does not allow large volume production without significant risk. The current consensus of the heavy-duty community is that for 2010 the SCR system will be the prime path to meet the 0.2 g/bHPhr NOx emission standard, although this is subject to adequate infrastructure investment and progress. As a low volume manufacturer, in order to comply with the 2007 heavy-duty phase-in emission standards, General Engine Products (a subsidiary of AM General LLC) integrated a NOx adsorber system on the Optimizer 6500 engine. This engine features split combustion chamber design, rotary fuel injection pump and operates with EGR.
Technical Paper

Development and Control of Electro-hydraulic Fully Flexible Valve Actuation System for Diesel Combustion Research

2007-10-29
2007-01-4021
Fully flexible valve actuation (FFVA) system, often referred to as camless valvetrain, employs electronically controlled actuators to drive the intake and/or exhaust valves. This technology enables the engine controller to tailor the valve event according to the engine operating condition in real-time to improve fuel economy, emissions and performance. At GM Research and Development Center, we have developed laboratory electro-hydraulic FFVA systems for single cylinder gasoline engines. The objective of this work is to develop a FFVA system for advanced diesel combustion research. There are three major differences between gasoline and diesel engines in terms of applying the FFVA systems. First, the orientation of the diesel engine valves and the location of the fuel injection system complicate the packaging issue. Second, the clearance between the valves and the piston for diesel engines are extremely small.
Technical Paper

Aggregating Technologies for Reduced Fuel Consumption: A Review of the Technical Content in the 2002 National Research Council Report on CAFE

2002-03-04
2002-01-0628
The National Research Council (NRC) recently published a report entitled “Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards” intended to help U.S. policymakers in the formulation of CAFE policy. In the Report, the NRC projects fuel consumption reductions from the application of a wide range of engine, transmission, and vehicle technologies. The Report employs a simple multiplicative method to aggregate the effects of multiple technologies on fuel consumption. In this paper, a basic energy balance calculation is used to examine the NRC results against theoretical limits. Theoretical limits are calculated using measured and simulated breakdowns of system energy losses incurred during vehicle operation on EPA driving cycles. This analysis demonstrates the inherently optimistic results produced by simple aggregation methodologies. Methods for enhancing the accuracy of the technology-aggregation process are proposed.
Technical Paper

Thermal-velocity Coupling in Vehicle Thermal System Calculations

2002-03-04
2002-01-1204
The issue of thermal-velocity coupling is discussed in the context of vehicle thermal system analysis. Temperature variations in the bulk of the fluids caused by the vehicle engine, cooling, and exhaust system lead to variations in the density of the airflow. The density variations impact the velocity field in two ways: by introducing a driving force term explicitly to account for the effect of buoyancy force and by coupling with the other governing equations. The buoyancy force is crucial for buoyancy driven flows such as vehicle under soak condition. The vehicle thermal system analysis based on the coupled approach leads to a 15°C improvement in the prediction of the underhood thermal environment.
Technical Paper

Simulating Neck Injury in Frontal Impact using LS-DYNA

2007-04-16
2007-01-0677
Neck injury assessment is part of the FMVSS208 requirements. Hardware tests are often conducted to validate whether the vehicle safety system meets the requirements. This paper presents a full vehicle finite element model using LS-DYNA, including structural components, restraint system components, and dummies. In the case of a frontal impact at 30deg angle, in the areas of neck compression, neck extension and neck kinematics, it is demonstrated that a good correlation is achieved between the response of a FE dummy in the model and those of ATDs in the physical hardware tests. It is concluded that the math tool may be applied to comprehend test and design variations that may arise throughout a vehicle development lifecycle and to help develop a vehicle restraint system.
Technical Paper

Overhead Sliding Video Screen Monitor

2006-04-03
2006-01-1486
A novel longitudinally sliding overhead video screen monitor was developed to address consumer needs for vehicles equipped with rear seat entertainment and long length sunroofs. Long length sunroof openings in vehicles are causing engineers to mount video screen monitors in locations other than the overhead. Typically, they are mounted on the floor console or on the back of front seat head restraints. Floor console mounted video screen monitors generally do not provide a comfortable viewing distance or angle for second and third row occupants. Head restraint mounted video monitors cause issues with seat shake and two monitors adds to the vehicle cost unnecessarily. The mountable sliding video monitor assembly comprises of a video display screen, brackets for mounting the monitor, a pair of tracks that are movable with respect to each other, a series of ball bearings, and a roof mounting bracket. The inner main track is adapted for mounting the pair of tracks to the vehicle.
Technical Paper

Development of the Hybrid System for the Saturn VUE Hybrid

2006-04-03
2006-01-1502
The hybrid system for the 2007 Model Year Saturn VUE Green Line Hybrid SUV was designed to provide the fuel economy of a compact sedan, while delivering improved acceleration performance over the base vehicle, and maintaining full vehicle utility. Key elements of the hybrid powertrain are a 2.4L DOHC engine with dual cam-phasers, a modified 4-speed automatic transmission, an electric motor-generator connected to the crankshaft through a bi-directional belt-drive system, power electronics to control the motor-generator, and a NiMH battery pack. The VUE's hybrid functionality includes: engine stop-start, regenerative braking, intelligent charge control of the hybrid battery, electric power assist, and electrically motored creep. Methods of improving urban and highway fuel economy via optimal use of the hybrid motor and battery, engine and transmission hardware and controls modifications, and vehicle enhancements, are discussed.
Technical Paper

Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA

2006-10-16
2006-01-3314
The focus of this research effort was to develop a technique to measure the cyclic variability of the mass injected by fuel injectors. Successful implementation of the measurement technique introduced in this paper can be used to evaluate injectors and improve their designs. More consistent and precise fuel injectors have the potential to improve fuel efficiency, engine performance, and reduce emissions. The experiments for this study were conducted at the Michigan State University Automotive Research Experiment Station. The setup consists of a fuel supply vessel pressurized by compressed nitrogen, a Dantec laser Doppler anemometry (LDA) system to measure the centerline velocity of fuel, a quartz tube for optical access, and a Cosworth IC 5460 to control the injector. The detector on the LDA system is capable of resolving Doppler bursts as short as 6μs, depending on the level of seeding, thus giving a detailed time/velocity profile.
Technical Paper

Application of Experimental Transfer Path Analysis and Hybrid FRF-Based Substructuring Model to SUV Axle Noise

2005-04-11
2005-01-1833
This paper describes an axle gear whine noise reduction process that was developed and applied using a combination of experimental and analytical methods. First, an experimental Transfer Path Analysis (TPA) was used to identify major noise paths. Next, modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method known as HYFEX [1]. The HYFEX model consisted of an experimental FRF representation of the frame/body and a finite element (FE) model of the driveline [2] and suspension. The FE driveline model was calibrated using experimental data. The HYFEX model was then used to simulate the axle noise reduction that would be obtained using a modified frame, prior to the availability of a prototype. Hardware testing was used as the final step in the process to confirm the results of the simulation.
Technical Paper

Bolt-load Retention Testing of Magnesium Alloys for Automotive Applications

2006-04-03
2006-01-0072
For automotive applications at elevated temperatures, the need for sufficient creep resistance of Mg alloys is often associated with retaining appropriate percentages of initial clamp loads in bolt joints. This engineering property is often referred to as bolt-load retention (BLR); BLR testing is a practical method to quantify the bolt load with time for engineering purposes. Therefore, standard BLR test procedures for automotive applications are desired. This report summarizes the effort in the Structural Cast Magnesium Development (SCMD) project under the United States Automotive Materials Partnership (USAMP), to provide a technical basis for recommending a general-purpose and a design-purpose BLR test procedures for BLR testing of Mg alloys for automotive applications. The summary includes results of factors influencing BLR and related test techniques from open literature, automotive industry and research carried out in this laboratory project.
X