Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Journal Article

Iterative Learning Algorithm Design for Variable Admittance Control Tuning of A Robotic Lift Assistant System

2017-03-28
2017-01-0288
The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
Journal Article

Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China

2017-03-28
2017-01-1297
This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
Technical Paper

Interactive Effects between Sheet Steel, Lubricants, and Measurement Systems on Friction

2020-04-14
2020-01-0755
This study evaluated the interactions between sheet steel, lubricant and measurement system under typical sheet forming conditions using a fixed draw bead simulator (DBS). Deep drawing quality mild steel substrates with bare (CR), electrogalvanized (EG) and hot dip galvanized (HDG) coatings were tested using a fixed DBS. Various lubricant conditions were targeted to evaluate the coefficient of friction (COF) of the substrate and lubricant combinations, with only rust preventative mill oil (dry-0 g/m2 and 1 g/m2), only forming pre-lube (dry-0 g/m2, 1 g/m2, and >6 g/m2), and a combination of two, where mixed lubrication cases, with incremental amounts of a pre-lube applied (0.5, 1.0, 1.5 and 2.0 g/m2) over an existing base of 1 g/m2 mill oil, were analyzed. The results showed some similarities as well as distinctive differences in the friction behavior between the bare material and the coatings.
Technical Paper

Leveraging Real-World Driving Data for Design and Impact Evaluation of Energy Efficient Control Strategies

2020-04-14
2020-01-0585
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are typically intended for evaluating emissions and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies.
Technical Paper

Investigation of Fracture Behavior of Deep Drawn Automotive Part affected by Thinning with Shell Finite Elements

2020-04-14
2020-01-0208
In the recent decades, tremendous effort has been made in automotive industry to reduce vehicle mass and development costs for the purpose of improving fuel economy and building safer vehicles that previous generations of vehicles cannot match. An accurate modeling approach of sheet metal fracture behavior under plastic deformation is one of the key parameters affecting optimal vehicle development process. FLD (Forming Limit Diagram) approach, which plays an important role in judging forming severity, has been widely used in forming industry, and localized necking is the dominant mechanism leading to fracture in sheet metal forming and crash events. FLD is limited only to deal with the onset of localized necking and could not predict shear fracture. Therefore, it is essential to develop accurate fracture criteria beyond FLD for vehicle development.
Technical Paper

Minimizing Disturbance Detection Time in Hydraulic Systems

2020-04-14
2020-01-0263
In a hydraulic system, parameter variation, contamination, and/or operating conditions can lead to instabilities in the pressure response. The resultant erratic pressure profile reduces performance and can lead to hardware damage. Specifically, in a transmission control system, the inability to track pressure commands can result in clutch or variator slip which can cause driveline disturbance and/or hardware damage. A variator is highly sensitive to slip and therefore, it is advantageous to identify such pressure events quickly and take remedial actions. The challenge is to detect the condition in the least amount of time while minimizing false alarms. A Neyman-Pearson and an energy detector (based on auto-correlation) are evaluated for the detection of pressure disturbances. The performance of the detectors is measured in terms of speed of detection and robustness to measurement noise.
Technical Paper

Customer Perception of Road-Induced Structural Feel

2020-04-14
2020-01-1080
Structural feel, or “vehicle feels solidly built” is a subjective measure that traditionally has been assessed by technical experts and executives. Vehicle programs’ timing and viability can be affected by these assessments. Objective measures would improve the vehicle development process. The first step in developing objective measures is to assess whether road-induced structural feel can be sensed by the customer. To this end, an internal drive clinic was conducted and proved to be an effective approach for obtaining customer perception of structural feel. Vehicles that spanned a range of excellent to poor structural feel were chosen by experts as part of the experimental design. The non-expert participants rank-ordered the vehicles’ structural feel performance in the order determined a priori by the experts. Results also indicate that the question “vehicle feels solidly built” is a good overall question for assessing structural feel.
Journal Article

Direct Aeroacoustic Simulation of Flow Impingement Noise in an Exhaust Opening

2011-05-17
2011-01-1517
Unusual noises during vehicle acceleration often reflect poorly on customer perception of product quality and must be removed in the product development process. Flow simulation can be a valuable tool in identifying root causes of exhaust noises created due to tailpipe openings surrounded by fascia structure. This paper describes a case study where an unsteady Computational Fluid Dynamics (CFD) simulation of the combined flow and acoustic radiation from an exhaust opening through fascia components provided valuable insight into the cause of an annoying flow noise. Simulation results from a coupled thermal/acoustic analysis of detailed tailpipe opening geometry were first validated with off-axis microphone spectra under wide open throttle acceleration. After studying the visualizations of unsteady flow velocity and pressure from the CFD, a problem that had proved difficult to solve by traditional “cut and try” methods was corrected rapidly.
Technical Paper

Testing Methods and Recommended Validation Strategies for Active Safety to Optimize Time and Cost Efficiency

2020-04-14
2020-01-1348
Given the current proliferation of active safety features on new vehicles, especially for Advanced Driver Assistance Systems (ADAS) and Highly Automated Driving (HAD) technologies, it is evident that there is a need for testing methods beyond a vehicle level physical test. This paper will discuss the current state of the art in the industry for simulation-based verification and validation (V&V) testing methods. These will include, but are not limited to, "Hardware-in-the-Loop (HIL)", “Software-in-the-Loop (SIL)”, “Model-in-the-Loop (MIL)”, “Driver-in-the-Loop (DIL)”, and any other suitable combinations of the aforementioned (XIL). Aspects of the test processes and needed components for simulation will be addressed, detailing the scope of work needed for various types of testing. The paper will provide an overview of standardized test aspects, active safety software validation methods, recommended practices and standards.
Technical Paper

Dynamic Impact Transient Bump Method Development and Application for Structural Feel Performance

2020-04-14
2020-01-1081
Road induced structural feel “vehicle feels solidly built” is strongly related to the vehicle ride [1]. Excellent structural feel requires both structural and suspension dynamics considerations simultaneously. Road induced structural feel is defined as customer facing structural and component responses due to tire force inputs stemming from the unevenness of the road surface. The customer interface acceleration and noise responses can be parsed into performance criteria to provide design and tuning vehicle integration program recommendations. A dynamic impact bump method is developed for vehicle level structural feel performance assessment, diagnostics, and development tuning. Current state of on-road testing has the complexity of multiple impacts, averaging multiple road induced tire patch impacts over a length of a road segment, and test repeatability challenges.
Technical Paper

Prediction of Combustion Phasing Using Deep Convolutional Neural Networks

2020-04-14
2020-01-0292
A Machine Learning (ML) approach is presented to correlate in-cylinder images of early flame kernel development within a spark-ignited (SI) gasoline engine to early-, mid-, and late-stage flame propagation. The objective of this study was to train machine learning models to analyze the relevance of flame surface features on subsequent burn rates. Ultimately, an approach of this nature can be generalized to flame images from a variety of sources. The prediction of combustion phasing was formulated as a regression problem to train predictive models to supplement observations of early flame kernel growth. High-speed images were captured from an optically accessible SI engine for 357 cycles under pre-mixed operation. A subset of these images was used to train three models: a linear regression model, a deep Convolutional Neural Network (CNN) based on the InceptionV3 architecture and a CNN built with assisted learning on the VGG19 architecture.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Process-Monitoring-for-Quality - A Step Forward in the Zero Defects Vision

2020-04-14
2020-01-1302
More than four decades ago, the concept of zero defects was coined by Phillip Crosby. It was only a vision at the time, but the introduction of Artificial Intelligence (AI) in manufacturing has since enabled it to become attainable. Since most mature manufacturing organizations have merged traditional quality philosophies and techniques, their processes generate only a few Defects Per Million of Opportunities (DPMO). Detecting these rare quality events is one of the modern intellectual challenges posed to this industry. Process Monitoring for Quality (PMQ) is an AI and big data-driven quality philosophy aimed at defect detection and empirical knowledge discovery. Detection is formulated as a binary classification problem, where the right Machine Learning (ML), optimization, and statistics techniques are applied to develop an effective predictive system.
Technical Paper

Development and Correlation of Co-Simulated Plant Models for Propulsion Systems

2020-04-14
2020-01-1416
Model-based system simulations play a critical role in the development process of the automotive industry. They are highly instrumental in developing embedded control systems during conception, design, validation, and deployment stages. Whether for model-in-the-loop (MiL), software-in-the-loop (SiL) or hardware-in-the-loop (HiL) scenarios, high-fidelity plant models are particularly valuable for generating realistic simulation results that can parallel or substitute for costly and time-consuming vehicle field tests. In this paper, the development of a powertrain plant model and its correlation performance are presented. The focus is on the following modules of the propulsion systems: transmission, driveline, and vehicle. The physics and modeling approach of the modules is discussed, and the implementation is illustrated in Amesim software. The developed model shows good correlation performance against test data in dynamic events such as launch, tip-in, tip-out, and gearshifts.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
Technical Paper

Virtual Powertrain Calibration at GM Becomes a Reality

2010-10-19
2010-01-2323
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
X