Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Technical Paper

Leveraging Real-World Driving Data for Design and Impact Evaluation of Energy Efficient Control Strategies

2020-04-14
2020-01-0585
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are typically intended for evaluating emissions and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies.
Technical Paper

Minimizing Disturbance Detection Time in Hydraulic Systems

2020-04-14
2020-01-0263
In a hydraulic system, parameter variation, contamination, and/or operating conditions can lead to instabilities in the pressure response. The resultant erratic pressure profile reduces performance and can lead to hardware damage. Specifically, in a transmission control system, the inability to track pressure commands can result in clutch or variator slip which can cause driveline disturbance and/or hardware damage. A variator is highly sensitive to slip and therefore, it is advantageous to identify such pressure events quickly and take remedial actions. The challenge is to detect the condition in the least amount of time while minimizing false alarms. A Neyman-Pearson and an energy detector (based on auto-correlation) are evaluated for the detection of pressure disturbances. The performance of the detectors is measured in terms of speed of detection and robustness to measurement noise.
Technical Paper

Dynamic Impact Transient Bump Method Development and Application for Structural Feel Performance

2020-04-14
2020-01-1081
Road induced structural feel “vehicle feels solidly built” is strongly related to the vehicle ride [1]. Excellent structural feel requires both structural and suspension dynamics considerations simultaneously. Road induced structural feel is defined as customer facing structural and component responses due to tire force inputs stemming from the unevenness of the road surface. The customer interface acceleration and noise responses can be parsed into performance criteria to provide design and tuning vehicle integration program recommendations. A dynamic impact bump method is developed for vehicle level structural feel performance assessment, diagnostics, and development tuning. Current state of on-road testing has the complexity of multiple impacts, averaging multiple road induced tire patch impacts over a length of a road segment, and test repeatability challenges.
Technical Paper

Development and Correlation of Co-Simulated Plant Models for Propulsion Systems

2020-04-14
2020-01-1416
Model-based system simulations play a critical role in the development process of the automotive industry. They are highly instrumental in developing embedded control systems during conception, design, validation, and deployment stages. Whether for model-in-the-loop (MiL), software-in-the-loop (SiL) or hardware-in-the-loop (HiL) scenarios, high-fidelity plant models are particularly valuable for generating realistic simulation results that can parallel or substitute for costly and time-consuming vehicle field tests. In this paper, the development of a powertrain plant model and its correlation performance are presented. The focus is on the following modules of the propulsion systems: transmission, driveline, and vehicle. The physics and modeling approach of the modules is discussed, and the implementation is illustrated in Amesim software. The developed model shows good correlation performance against test data in dynamic events such as launch, tip-in, tip-out, and gearshifts.
Technical Paper

Self-Tuning PID Design for Slip Control of Wedge Clutches

2017-03-28
2017-01-1112
The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
Technical Paper

Multi Body Dynamics Modeling of Launch Shudder in Electric Vehicles

2022-03-29
2022-01-0308
The continued push for faster automotive design cycles while maintaining high product quality requires increasing fidelity in virtual analysis. One vibration disturbance load case that has been targeted for virtual analysis improvement is launch shudder, particularly in electric vehicle (EV) applications. Launch shudder can be caused by halfshaft constant velocity joint (CVJ) excitation of a powertrain mounting resonance. It is heavily dependent on the CVJ friction characteristics, axle torque, dynamic operating angles of the halfshafts, the mounting system of the powertrain and the transfer path of vibration to the occupant’s seat. The need to model these parameters accurately makes a full vehicle, multi body dynamics model a great candidate for this load case. This study introduces an approach to modeling, analysis and applications of launch shudder simulation at General Motors.
Technical Paper

An Automated Procedure for Implementing Steer Input during Ditch Rollover CAE Simulation

2022-10-05
2022-28-0365
Vehicle manufacturers conduct tests to develop crash sensing system calibrations. Ditch fall-over is one of a suite of laboratory tests used to develop rollover sensing calibrations that can trigger deployment of safety devices like roof rail airbags and seat belt pretensioners. The ditch fall-over test simulates a flat road followed by a ditch on one side of the road. The vehicle heads into the ditch and the driver applies swift steer input once the ditch slope is sensed. Typically, the steer input is applied when the two down-slope wheels on the ditch side enter the ditch. Multi-Body Dynamics (MBD) software can be used for virtual simulation of these test events. Conventionally in simulations, the vehicle-model is run without steer input and the marking line crossing time is observed/manually recorded from observation of simulation video. This recorded time is used to apply the steer input and the full event is then re-simulated.
Technical Paper

Use of Active Rear Steering to Achieve Desired Vehicle Transient Lateral Dynamics

2018-04-03
2018-01-0565
This paper studies the use of active rear steering (4-wheel steering) to change the transient lateral dynamics and body motion of passenger cars in the stable or linear region of the tires. Rear steering systems have been used for several decades to improve low speed turning maneuverability and high speed stability, and various control strategies have been previously published. With a model-based, feed-forward rear steer control strategy, the lateral transient can be influenced separately from the steady-state steering gain. This lateral transient is influenced by many vehicle parameters, but we will look at the influence of active rear steer and various tire types such as all-season, snow, and summer. This study will explore the ability for a rear steering system to change the lateral transient to a step steer input, compared to the effect of changing tire types.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

Cascaded Dual Extended Kalman Filter for Combined Vehicle State Estimation and Parameter Identification

2013-04-08
2013-01-0691
This paper proposes a model-based “Cascaded Dual Extended Kalman Filter” (CDEKF) for combined vehicle state estimation, namely, tire vertical forces and parameter identification. A sensitivity analysis is first carried out to recognize the vehicle inertial parameters that have significant effects on tire normal forces. Next, the combined estimation process is separated in two components. The first component is designed to identify the vehicle mass and estimate the longitudinal forces while the second component identifies the location of center of gravity and estimates the tire normal forces. A Dual extended Kalman filter is designed for each component for combined state estimation and parameter identification. Simulation results verify that the proposed method can precisely estimate the tire normal forces and accurately identify the inertial parameters.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Technical Paper

Driveline Control Influence when ABS Active

2023-04-11
2023-01-0662
The interaction between driveline control and anti-lock braking system (ABS) control in electric vehicles (EV) was investigated based on multi-body dynamics (MBD) model and control model co-simulation. Two primary driveline control algorithms, active damping control and wheel flare control, were integrated with ABS control in Simulink model and the influence on ABS control was studied. The event for high mu to low mu transition was simulated. When ABS control is active on low mu surface, the vehicle shows large wheel slip and long duration time before wheel speed returns to stable control. This performance could be improved with activating driveline control. Deceleration uniformity metric shows that active damping control has very small effect when ABS control becomes stable after passing through the high mu to low mu transition period. Driveline damping control can help to reduce vibration, but it is difficult to find satisfied tuning for wheel speed performance.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Journal Article

Role of Worst-Case Operating Scenario and Component Tolerance in Robust Automotive Electronic Control Module Design

2023-04-11
2023-01-0849
Use of electronic systems in the vehicles is increasing day by day. As Electronic Control Modules (ECMs) become a large part of the vehicle, automotive designers need to take diligent decision of selecting electrical and electronic components. Selecting these components for ECM depends on four major factors: meeting stringent vehicle requirements, performance over the lifespan, robustness/reliability and cost. There is always an urge of reducing the cost of the ECM, but robustness of the controller module must not be compromised. One electrical or electronic component failure or false fault detection not only increases warranty cost but may also stall the vehicle, and interrupts customer’s daily routine creating dissatisfaction. This paper emphasizes on the importance of understanding worst-case operating scenarios considering component tolerances over the operating range, datasheet, and impact of tolerances on performance and fault detection.
Technical Paper

Crash-induced Loads in Liftgate Latching Systems

2018-04-03
2018-01-1333
Automotive liftgate latches have been subject to regulation for minimum strength and inertial resistance requirements since the late 1990’s in the US and globally since the early 2000’s, possibly due to liftgate ejections stemming from the first generation Chrysler minivans which employed latches that were not originally designed with this hazard in mind. Side door latches have been regulated since the 1960’s, and the regulation of liftgate, or back door latches, have been based largely on side door requirements, with the exception of the orthogonal test requirement that is liftgate specific. Based on benchmarking tests of liftgate latches, most global OEM’s design their latches to exceed the minimum regulatory requirements. Presumably, this is based on the need to keep doors closed during crashes and specifically to do so when subjected to industry standard tests.
Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
X