Refine Your Search

Topic

Author

Search Results

Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Journal Article

Experimental and Simulative Friction Analysis of a Fired Passenger Car Diesel Engine with Focus on the Cranktrain

2016-10-17
2016-01-2348
The CO2 reduction required by legislation represents a major challenge to the OEMs now and in the future. The use of fuel consumption saving potentials of friction-causing engine components can make a significant contribution. Boundary potential aspects of a combustion engine offer a good opportunity for estimating fuel consumption potentials. As a result, the focus of development is placed on components with great saving potentials. Friction investigations using the motored method are still state of the art. The disadvantages using this kind of friction measurement method are incorrect engine operating conditions like cylinder pressure, piston and liner temperatures, piston secondary movement and warm deformations which can lead to incorrect measurement results compared to a fired engine. In the past, two friction measurement methods came up, the so called floating liner method and a motored friction measurement with external charging.
Journal Article

Investigations and Analysis of Working Processes of Two-Stroke Engines with the Focus on Wall Heat Flux

2016-11-08
2016-32-0028
Small displacement two-stroke engines are widely used as affordable and low-maintenance propulsion systems for motorcycles, scooters, hand-held power tools and others. In recent years, considerable progress regarding emission reduction has been reached. Nevertheless, a further improvement of two-stroke engines is necessary to cover protection of health and environment. In addition, the shortage of fossil fuel resources and the anthropogenic climate change call for a sensual use of natural resources and therefore, the fuel consumption and engine efficiency needs to be improved. With the application of suitable analyses methods it is possible to find improving potential of the working processes of these engines. The thermodynamic loss analysis is a frequently applied method to examine the working process and is universally adaptable.
Journal Article

Experimental Optimization of a Small Bore Natural Gas-Diesel Dual Fuel Engine with Direct Fuel Injection

2016-04-05
2016-01-0783
Dual fuel combustion processes, which burn varying ratios of natural gas and diesel, are an attempt to reach high efficiencies similar to diesel engines while exploiting the CO2 savings potential of natural gas. As shown in earlier studies, the main challenge of this combustion process is the high emission of unburned hydrocarbons during low load operation. Many publications have focused on a layout which utilizes port injection of natural gas and a direct injection of diesel to initiate combustion. However, previous studies indicated that a sequential direct injection of both fuels is more promising. It enables charge stratification of natural gas and air, whereby a remarkable reduction of the unburned hydrocarbon emissions was observed. This work develops this approach further, utilizing a low pressure direct injection of natural gas.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Evaluation of Methods for Identification of Driving Styles and Simulation-Based Analysis of their Influence on Energy Consumption on the Example of a Hybrid Drive Train

2020-04-14
2020-01-0443
Due to current progresses in the field of driver assistance systems and the continuously growing electrification of vehicle drive trains, the evaluation of driver behavior has become an important part in the development process of modern cars. Findings from driver analyses are used for the creation of individual profiles, which can be permanently adapted due to ongoing data processing. A benefit of data-based dynamic control systems lies in the possibility to individually configure the vehicle behavior for a specific driver, which can contribute to increasing customer acceptance and satisfaction. In this way, an optimization of the control behavior between driver and vehicle and the resulting mutual system learning and -adjustment hold great potential for improvements in driving behavior, safety and energy consumption.
Journal Article

Layout of a Charged Power Sport Engine

2012-10-23
2012-32-0069
The main target for the development of power sport engines is and will be in future the increase of the power-to-weight ratio. However, the reduction of carbon dioxide emissions is getting more and more important as future legislation and increasing customer demands ask for lower fuel consumption. One possible technology for CO₂ reduction which is widely used in automotive applications is downsizing by reducing the engine capacity and increasing the specific power by charging strategies. Focusing on power sport applications, like motorcycles, the automotive downsizing technologies cannot be transferred without major modifications. The essential difference to automotive applications is the extraordinary response behavior of today's motorcycles, as well as the large engine speed spread. Additionally, packaging and cost reasons exclude the direct transfer of highly complex automotive technology, like two-stage charging, cam-phasing, etc., to motorcycle applications.
Journal Article

Future Engine Technology in Hand-Held Power Tools

2012-10-23
2012-32-0111
Today mankind is using highly sophisticated tools which contribute to maintain the standard of living. Nevertheless, these tools have to be further improved in the near future in order to protect health and environment as well as to ensure prosperity. Two-stroke engines equipped with a carburettor are the most used propulsion technology in hand-held power tools like chain saws and grass trimmers. The shortage of fossil resources and the necessary reduction of carbon dioxide emissions ask for improved engine efficiency. Concurrently, customers demand for an easy usage with high performance at all operating conditions, e.g. varying ambient temperature and pressure and different fuels. Moreover, world-wide emission limits will be even stricter in future. The improvement of the emission level, fuel consumption and customer benefits, while keeping the present advantages of two-stroke engines, like high specific power and simplicity, are the goals of this research work.
Journal Article

Evaluation of Valve Train Variability in Diesel Engines

2015-09-06
2015-24-2532
The continuously decreasing emission limits lead to a growing importance of exhaust aftertreatment in Diesel engines. Hence, methods for achieving a rapid catalyst light-off after engine cold start and for maintaining the catalyst temperature during low load operation will become more and more necessary. The present work evaluates several valve timing strategies concerning their ability for doing so. For this purpose, simulations as well as experimental investigations were conducted. A special focus of simulation was on pointing out the relevance of exhaust temperature, mass flow and enthalpy for these thermomanagement tasks. An increase of exhaust temperature is beneficial for both catalyst heat-up and maintaining catalyst temperature. In case of the exhaust mass flow, high values are advantageous only in case of a catalyst heat-up process, while maintaining catalyst temperature is supported by a low mass flow.
Journal Article

Different Speed Limiting Strategies for 50cm3 Two-Wheelers and Their Impacts on Exhaust Emissions and Fuel Economy

2011-11-08
2011-32-0587
Usually the power output of 50 cm₃ two wheelers is higher than necessary to reach the maximum permitted vehicle speed, making engine power restriction necessary. This publication deals with different power restriction strategies for four-stroke engines and their effect on exhaust emissions. Alternative power limitation strategies like EGR and leaning were investigated and compared with the common method of spark advance reduction to show the optimization potential for this certain engine operation conditions. From these tests, a substantial set of data showing the pros and cons in terms of emissions, combustion stability and fuel economy could be derived for each speed limiting technique.
Technical Paper

Exhaust Emission Reduction in Small Capacity Two- and Four-Stroke Engine Technologies

2006-11-13
2006-32-0091
State of the art technologies of 2 and 4 stroke engines have to fulfill severe future exhaust emission regulations, with special focus on the aspects of rising performance and low cost manufacturing, leading to an important challenge for the future. In special fields of applications (e.g. mopeds, hand held or off-road equipment) mainly engines with simple mixture preparation systems, partially without exhaust gas after treatment are used. The comparison of 2 and 4 stroke concepts equipped with different exhaust gas after treatment systems provides a decision support for applications in a broad field of small capacity engine classes.
Technical Paper

Numerical and Experimental Parameter Studies on Brake Squeal

2010-10-10
2010-01-1712
This paper deals with the analysis of a complete axle of a passenger car, which shows brake squeal in test runs. The complete brake system including the parts of the corner is studied with two different Finite Element Analysis programs and their brake squeal calculation algorithms. Thereby significant differences between the results of the two simulations and also the experiments are observed. The used element type and the chosen discretisation level influence largely the simulated contact and thereby the overall results. In order to explain these outcomes, the force distribution and the force vectors between disc and pad are analysed. On the one hand tetrahedral elements cause stiffening of the parts and hence of the contact. On the other hand the effort to create hexahedral elements in daily meshing practice is often omitted due to cost reasons. This trend is enforced by the statement of software vendors.
Technical Paper

Potential of E85 Direct Injection for Passenger Car Application

2010-10-25
2010-01-2086
This paper presents an analysis of the potential of E85 (a mixture of 85 % (bio)ethanol and 15 % gasoline) as a fuel for spark-ignition (SI) direct-injection internal combustion engines. This involves investigation of not only application to downsizing concepts with high specific power but also behavior relating to emissions and efficiency at both part and full load. Measurements while running on gasoline were used for comparison purposes. The first stage involved analysis using 1D simulation of two different downsizing concepts with regard to turbocharging potential and performance. Following this, various influential parameters such as injector position, injection pressure, compression ratio, degree of turbocharging etc. were investigated on a single cylinder research engine. In the case of high pressure direct injection, particulate emissions also play an important role, so particulate count and particulate size distribution were also studied in detail.
Technical Paper

Basic Investigations on the Prediction of Spray-Wall and Spray-Fluid Interaction for a GDI Combustion Process

2010-09-28
2010-32-0030
This publication covers investigations on different 3D CFD models for the description of the spray wall and droplet-fluid interaction and the influence of these models on the mixture formation calculation results. Basic experimental investigations in a spray chamber and a flow tunnel as well as the corresponding 3D CFD simulation were conducted in order to clarify the prediction quality of the physical phenomena of spray-wall and spray-fluid interaction by the simulation. Influencing parameters such as the piston top temperature, piston bowl geometry, soot deposits on the piston top as well as flow velocity are investigated. This paper provides a direct link between the underlying simulation models of the mixture formation and actual real world combustion system development processes - underlining the importance of a close interaction of the model calibration and the development process.
Technical Paper

Investigations on Low Pressure Gasoline Direct Injection for a Standard GDI Combustion System

2010-09-28
2010-32-0094
In the course of the last few years a continuous increase of the injection pressure level of gasoline direct injection systems appeared. Today's systems use an injection pressure up to 200bar and the trend shows a further increase for the future. Although several benefits go along with the increased injection pressure, the disadvantages such as higher system costs and higher energy demand lead to the question of the lowest acceptable injection pressure level for low cost GDI combustion systems. Lowering injection pressure and costs could enable the technological upgrading from MPFI to GDI in smaller engine segments, which would lead to a reduction of CO2 emission. This publication covers the investigation of a low pressure GDI system (LPDI) with focus on small and low cost GDI engines. The influence of the injection pressure on the fuel consumption and emission behavior was investigated using a 1.4l series production engine.
Technical Paper

Study of Possible Range Extender Concepts with Respect to Future Emission Limits

2010-09-28
2010-32-0129
The future exhaust emission legislation limits and the procedures for running the test cycles will have an important influence on future range extender concepts. Due to the special steady state operation strategy of the range extender engines, it is possible to create a simple methodology for comparing engine test bench emissions with the emission limits of exhaust gas legislations. Therefore the energy demand of a predefined vehicle was simulated with PHEM, a longitudinal dynamic simulation tool. According to that, the influence of different exhaust gas after treatment systems and preheating options on the tolerated raw emission concentration will be analyzed. With this information, a few chosen range extender engine concepts will be compared concerning their suitability for future exhaust emission legislations. The selection of the range extender concepts was carried out with the methotology of a value benefit analysis.
Technical Paper

COST 346 emissions and fuel consumption from heavy-duty vehicles

2001-09-23
2001-24-0075
The greenhouse gas emission reduction targets agreed at Kyoto represent a first step to reduce emissions in the long term in order to stabilize the earth's climate. The European Union has made an important contribution to the Kyoto agreement and the European Commission intends to develop a strategy to reach the Union's Kyoto target. This will require action in all sectors of the economy including the transport sector. Of the six gases covered by the Kyoto protocol, carbon dioxide (CO2) is the most important as it accounts for about 80% of the total global warming potential of all six greenhouse gases. In the European Union, the share of transport CO2 emissions in total increased from 19% in 1985 to 26% in 1995. Road traffic is the most important source, and largely determines the trend in the transport sector; and road freight accounts for about 35% of transport CO2 emissions. As well as CO2, road freight transport causes considerable amounts of other pollutant emissions.
Technical Paper

Size distribution of particulate matter~Results from roadside measurements

2001-09-23
2001-24-0078
Measurements of ultrafine particles (diameter < 300 nm) and total suspended particulates (TSP) were performed in 2 tunnels (Lundby, Gothenborg, S, and Plabutsch, Graz, A). The measurements in the Lundby tunnel were performed directly in the tunnel tube at the roadside whereas the measurements at the Plabutsch tunnel took place at the top of a 90 m high ventilation shaft. There was good correlation for all diameters (7.91 nm - 300 nm) between ultrafine particles and TSP for the measurements at the Lundby tunnel. At the Plabutsch site a correlation between ultrafine particles and TSP was detected only for particles > 35 nm. The maximum of the particle size distribution function for Lundby was at 30 nm and for the Plabutsch tunnel at 80 nm.
Technical Paper

Methodology for Automated Fault Diagnosis at Engine Test Beds

2017-01-10
2017-26-0326
Experimental investigations on engine test beds represent a significant cost in engine development. To reduce development time and related costs, it is necessary to check the quality of measurements automatically whenever possible directly on the test bed to allow early detection of faults. A fault diagnosis system should provide information about the presence, cause and magnitude of an inconsistency in measurement. The main challenge in developing such a system is to detect the fault quickly and reliably. However, only faults that have actually occurred should be detected because the user will only adopt a system that provides accurate results. This paper presents a methodology for automated fault diagnosis at engine test beds, starting with an explanation of the general procedure. Next, the methods applied for fault detection are introduced.
Technical Paper

Analysis of Conventional Motorcycles with the Focus on Hybridization

2016-11-08
2016-32-0031
The release of the “Regulation No. 168/2013” for the approval and market surveillance of two- or three-wheel motorcycles and quadricycles of the European Union started a new challenge for the motorcycle industry. One goal of the European Union is to achieve emission parity between passenger cars (EURO 6) and motorcycles (EURO 5) in 2020. The hybridization of motorcycle powertrains is one way to achieve these strict legislation limits. In the automotive sector, hybridization is well investigated and has already shown improvements of fuel consumption, efficiency and emission behavior. Equally, motorcycle applications have a high potential to improve efficiency and to meet customer needs as fun to drive as well. This paper describes a methodical approach to analyze conventional motorcycles regarding the energy and power demand for different driving cycles and driving conditions. Therefore, a dynamic or forward vehicle simulation within MATLAB Simulink is used.
X