Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Layout of a Charged Power Sport Engine

2012-10-23
2012-32-0069
The main target for the development of power sport engines is and will be in future the increase of the power-to-weight ratio. However, the reduction of carbon dioxide emissions is getting more and more important as future legislation and increasing customer demands ask for lower fuel consumption. One possible technology for CO₂ reduction which is widely used in automotive applications is downsizing by reducing the engine capacity and increasing the specific power by charging strategies. Focusing on power sport applications, like motorcycles, the automotive downsizing technologies cannot be transferred without major modifications. The essential difference to automotive applications is the extraordinary response behavior of today's motorcycles, as well as the large engine speed spread. Additionally, packaging and cost reasons exclude the direct transfer of highly complex automotive technology, like two-stage charging, cam-phasing, etc., to motorcycle applications.
Technical Paper

Possibilities and Limits of 1D CFD Simulation Methodology for the Layout of 2-Stroke GDI Combustion System

2010-09-28
2010-32-0017
The development process of 2-stroke engines is characterized by limited CFD investigations in combination with long-term development phases on the test bench with high prototype costs. To reduce the costs and to realize shorter development time together with a higher prediction quality of the engine potential, a higher implementation level of 1D and 3D simulation tools into the development process is necessary. This publication outlines the 1D simulation methods in the layout phase of GDI combustion processes of 2-stroke engine categories. By means of conceptual investigations, the demands, the potential and the limits of 1D CFD simulation methodology are defined. Using a comparison between 1D and 3D or 1D/3D coupled simulation methods the limits of solely 1D simulation are shown. For advanced simulation tasks with a higher demand for prediction quality, the entire engine is simulated in 1D, whereas special parts of the engine design are simulated in a 3D model.
Technical Paper

Analysis of Conventional Motorcycles with the Focus on Hybridization

2016-11-08
2016-32-0031
The release of the “Regulation No. 168/2013” for the approval and market surveillance of two- or three-wheel motorcycles and quadricycles of the European Union started a new challenge for the motorcycle industry. One goal of the European Union is to achieve emission parity between passenger cars (EURO 6) and motorcycles (EURO 5) in 2020. The hybridization of motorcycle powertrains is one way to achieve these strict legislation limits. In the automotive sector, hybridization is well investigated and has already shown improvements of fuel consumption, efficiency and emission behavior. Equally, motorcycle applications have a high potential to improve efficiency and to meet customer needs as fun to drive as well. This paper describes a methodical approach to analyze conventional motorcycles regarding the energy and power demand for different driving cycles and driving conditions. Therefore, a dynamic or forward vehicle simulation within MATLAB Simulink is used.
Technical Paper

Comparison of Different Downsizing Strategies for 2- and 3-Cylinder Engines by the Use of 1D-CFD Simulation

2016-11-08
2016-32-0037
The internal combustion engine is still the most important propulsion system for individual mobility. Especially for the application of motorcycles and recreation vehicles the extraordinary high power density is crucial. Today, these engines are mainly 4-stroke naturally aspirated MPFI engines. The main difference to the automotive sector is the abandonment of all cost intensive technologies, like variable valve timing, intake air charging or gasoline direct injection. The need for further investigations and implementation of new technologies is given due to the very high share of total road transport emissions of motorcycles and the introduction of the emission limits of EURO5 in 2020. One possibility to reach the future emission limits is the downsizing strategy. For this, the potential for emission and fuel consumption reduction is well known.
Technical Paper

Experimental Verification and Drivability Investigations of a Turbo Charged 2-Cylinder Motorcycle Engine

2014-11-11
2014-32-0112
There are several reasons for equipping an internal combustion engine with a turbo-charger. The most important motivation for motorcycle use is to increase the power to weight ratio. Focusing on the special boundary conditions of motorcycles, like the wide engine speed range or the extraordinarily high demands on response behavior, automotive downsizing technologies cannot be transferred directly to this field of application. This led to the main question: Is it possible to design a turbo-charged motorcycle engine with satisfactory drivability and response behavior? The layout of the charged motorcycle engine was derived by simulation and had to be verified by experimental investigations. Main components, like the turbo charger or the waste gate control as well as the influence of the increasing back pressure on the combustion, were verified by test bench measurements. Afterwards the operation strategy in general was investigated and applied to the prototype engine.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
X