Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

The Hino E13C: A Heavy-Duty Diesel Engine Developed for Extremely Low Emissions and Superior Fuel Economy

2004-03-08
2004-01-1312
The Hino E13C was developed for heavy-duty truck application to meet Japan's 2003 NOx and 2005 particulate emissions standards simultaneously with significant fuel economy improvement. A combined EGR system consisting of an external EGR system with a highly efficient EGR cooler and an internal EGR system with an electronically controlled valve actuation device was newly developed to reduce NOx emissions for all operating conditions without requiring a larger engine coolant radiator. A Hino-developed DPR was installed to achieve extremely low particulate emissions at the tail pipe. Increased strength of engine structural components and a ductile cast iron piston enabled high BMEP operation at lower engine speeds and reductions of both engine size and weight. This paper describes key technologies developed for the E13C as well as the development results.
Technical Paper

Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine

1988-02-01
880109
In this paper, the flow patterns and velocity distributions of coolant flow around cylinder liners of diesel engine are studied by numerical calculation and experimental observation. The experiment is carried out by oil film method and direct observation with a transparent acrylic cylinder liner. The calculation is performed with the 3-dimensional model by FEM for fluid flow. The motion of coolant flow by calculation corresponds with the result by oil film method and direct observation with transparent cylinder liner. The visualization of the 3-dimensional calculation gives a good understanding about motion of coolant flow and pressure distribution in water chamber. This method is applied to improve the coolant flow with the stagnation around cylinder liner. The effect of improved design is confirmed by experiment. That is, there are no stagnations in the flow around cylinder liners.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
X