Refine Your Search

Topic

Search Results

Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

Development of Diesel Combustion for Commercial Vehicles

1997-08-06
972685
Historically the high speed diesel engine for commercial vehicles has been developed along with its combustion system in compliance with political and economical changes. After the 1970's, stricter exhaust emission regulations and fuel economy requirements induced combustion developments and application of turbocharged and inter cooled engines. From the late 1980's, high pressure fuel injection has been investigated and recognized as an essential tool for lowering emissions especially of particulate matter. Although turbulence effects on both in-cylinder air motion and during the combustion process are quite effective, they show different phenomena in conventional and advanced high pressure fuel injection systems. In the 1990's, multiple injection with high pressure has been attempted for further reduction of NOx and particulate matter.
Technical Paper

Combustion Optimization by Means of Common Rail Injection System for Heavy-Duty Diesel Engines

1998-10-19
982679
This paper describes the combustion optimizations of heavy-duty diesel engines for the anticipated future emissions regulations by means of an electronically controlled common rail injection system. Tests were conducted on a turbocharged and aftercooled (TCA) prototype heavy-duty diesel engine. To improve both NOx-fuel consumption and NOx-PM trade-offs, fuel injection characteristics including injection timing, injection pressure, pilot injection quantity, and injection interval on emissions and engine performances were explored. Then intake swirl ratio and combustion chamber geometry were modified to optimize air-fuel mixing and to emphasize the pilot injection effects. Finally, for further NOx reductions, the potentials of the combined use of EGR and pilot injection were experimentally examined. The results showed that the NOx-fuel consumption trade-off is improved by an optimum swirl ratio and combustion chamber geometry as well as by a new pilot concept.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Analysis of Combustion Flame Under EGR Conditions in a DI Diesel Engine

1996-02-01
960323
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, this phenomena has been studied in detail in a multi-cylinder DI diesel engine using a new method allowing the in-cylider temperature distribution to be measured by the two color method. An endoscope is installed in the combustion chamber and flame light introduced from the endoscope is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature and KL factor are immediately calculated by a computer using the two color images from the CCD camera. In the case of EGR, the test was conducted under 75% load conditions. The flame temperature was reduced according to an increase of EGR rate.
Technical Paper

Noise Generating Mechanism at Idling for a Four-cylinder In-line Diesel Engine

2003-05-05
2003-01-1720
The separation of combustion noise and mechanical noise from the total noise of a four-cylinder in-line diesel engine at idling was carried out with high accuracy by changing the fuel injection timing. The mechanical noise, which accounts for the major share at 93%, was then separated into noises from the typical mechanical causes, and the valve train was found to be the major noise source. From analysis of the noise generating mechanism for the valve train, it was clarified that the noise was caused mainly by the gear rattling owing to the variation in the camshaft drive torque.
Technical Paper

Advances of Hino J-series Diesel Engines

2003-03-03
2003-01-0054
Approximately 200,000 units of Hino J-series diesel engine were produced for 7 years. The J-series engines had a reputation all over the world for their performance, reliability, lightweight, and installation ability. They are composed of 4, 6 cylinders engines and unique 5-cylinder engine J07C. In 2002, newly modified J-series engines, which met the Japan 2001 noise emission regulations, were developed and J07C-TI, 5-cylinder TI engine, equipped with a common-rail fuel injection system was added in the J-series. Common-rail fuel injection system was equipped in order to achieve the emission targets in the future as well as to meet the current emission regulations. Achieving higher injection pressure level through the all engine speed, include excess low speed, was effective in reduction of PM emissions and in increasing of low engine speed torque drastically.
Technical Paper

A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance

2016-04-05
2016-01-0722
In order to improve the brake thermal efficiency of the engine, such as cooling and friction losses from the theoretical thermal efficiency, it is necessary to minimize various losses. However, it is also essential to consider improvements in theoretical thermal efficiency along with the reduction of the various losses. In an effort to improve the brake thermal efficiency of heavy-duty diesel engines used in commercial vehicles, this research focused on two important factors leading to the engine's theoretical thermal efficiency: the compression ratio and the specific heat ratio. Based on the results of theoretical thermodynamic cycle analyses for the effects of the above two factors, it was predicted that raising the compression ratio from a base engine specification of 17 to 26, and increasing the specific heat ratio would lead to a significant increase in theoretical thermal efficiency.
Technical Paper

Development of a Higher Boost Turbocharged Diesel Engine for Better Fuel Economy in Heavy Vehicles

1983-02-01
830379
This paper presents technical solutions and a development process to accomplish not only superior fuel economy but also excellent driveability with a turbocharged diesel engine for heavy duty trucks. For better fuel economy, one of the basic considerations is how to decrease the friction losses of the engine itself while keeping the required horsepower and torque characteristics. A high boost turbocharged small engine offers this possibility, but it has serious disadvantages such as inferior low speed torque, poorer accelerating response, insufficient engine braking performance, and finally not always so good fuel consumption in the engine operating range away from the matching point between engine and turbocharger. These are not acceptable in complicated traffic conditions like those in Japan - a mixture of mountainous and hilly roads, city road with numerous traffic signals, and freeways.
Technical Paper

Development of a Combustion System for a Light Duty D.I. Diesel Engine

1983-09-12
831296
A new combustion system for a light duty D.I. diesel engine was developed, and a 3.5 ton payload truck (6.5 ton G.V.W.) equipped with this D.I. diesel engine and this combustion system realized good fuel economy and lower exhaust gas emission. Generally, light duty vehicles have to operate over a wide engine speed range. Therefore application of a D.I. diesel engine to light duty vehicles is difficult because of combustion tuning requirements over a wide engine speed range. Up to now, most of the diesel engines for light vehicles have been of the I.D.I. type. But the D.I. diesel engine has an evident advantage of lower fuel consumption. In these circumstances the authors developed a new combustion chamber shape for a small D.I. diesel engine with turbulence induced intake port and optimum fuel injection equipment. Various combustion chamber geometries were tested and evaluated.
Technical Paper

Analysis of Cold Start Combustion in a Direct Injection Diesel Engine

1984-02-01
840106
Fuel injection timing retardation for reducing exhaust emission of direct injection diesel engines prolongs the period to complete cold starting. Engine speed at this period varies through some accelerating and faltering stages. The speed variation and relating combustion characteristics was investigated through the measurement of cylinder pressure for each cylinder as well as the dynamic fuel injection timing and instantaneous engine speed. An improvement of cold start was shown by application of afterheat of a sheathed type glow plug and an electronic fuel injection timing control device.
Technical Paper

Development of Low Fuel Consumption, High Durability, and Low Emissions J-Series Engines

1999-03-01
1999-01-0830
Environmental protection is now one of the most important social concerns in the world. In 1998, emission controls in the US required the reduction of NOx by 20% from the 1994 limit. Hino Motors has developed new J-series medium-duty diesel engines for trucks that meet the US 1998 emissions regulations. The engines comprise turbocharged and aftercooled 4- and 6-cylinder engines of the same cylinder bore and stroke. The engines feature a 4-valve system, OHC valve train design, centered nozzle arrangement, and an optimum combustion chamber design, which achieved uniform combustion. With these features, the maximum combustion temperature was decreased, and hence reduced the NOx, smoke, and PM emissions. A muffler integrated with a catalytic converter (catalytic muffler) was adopted to reduce PM emissions further. The engines with the catalytic muffler have successfully met the US 1998 emissions regulations.
Technical Paper

Effect of Combustion Chamber Configuration on In-Cylinder Air Motion and Combustion Characteristics of D.I. Diesel Engine

1985-02-01
850070
A new combustion system for a light duty D. I. diesel engine was developed and introduced (1)*. The combustion chamber, which was used in the combustion system, has 4 concaves on the periphery of the inner wall and was calld HMMS-III. This combustion chamber realized better fuel consumption and lower smoke level over a wide speed range. However, the effects of HMMS-III combustion chamber on in-cylinder air motion and combustion characteristics were not yet clarified in the previous paper. In this study, in order to clarify the effects of HMMS-III combustion chamber on in-cylinder air motion and characteristics, analysis of flow direction and streak line via oil film method was carried out in comparison with flat dish and re-entrant type combustion chambers. Further, measurement of in-cylinder air motion by L.D.V. and observation of mixture formation and burning process via high speed schlieren photography were carried out.
Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Technical Paper

Characteristics of Diesel Soot Suppression with Soluble Fuel Additives

1987-09-01
871612
Experiments on a large number of soluble fuel additives were systematically conducted for diesel soot reduction. It was found that Ca and Ba were the most effective soot suppressors. The main determinants of soot reduction were: the metal mol-content of the fuel, the excess air factor, and the gas turbulence in the combustion chamber. The soot reduction ratio was expressed by an exponential function of the metal mol-content in the fuel, depending on the metal but independent of the metal compound. A rise in excess air factor or gas turbulence increased the value of a coefficient in the function, resulting in larger reductions in soot with the fuel additives. High-speed soot sampling from the cylinder showed that with the metal additive, the soot concentration in the combustion chamber was substantially reduced during the whole period of combustion. It is thought that the additive acts as a catalyst not only to improve soot oxidation but also to suppress soot formation.
Technical Paper

Low Emission Combustion influences Durability of Fuel Injection Pipe Line and Treatment of the Pipe

1987-09-01
871614
In order to reduce particulate and NOx emission from the direct injection diesel engine, most researchers have been expecting the utilization of higher injection pressure and injection rate for improvement of diesel combustion. In the case of pump-line-nozzle system, the injection pipe line is very important with regard to the high injection pressure. Namely, the pipe line must be able to resist not only high pressure but also cavitation erosion. In this paper, the effect of high injection pressure, injection rate and sharp cutting at the end of fuel injection are discussed along with cavitation phenomena on the injection pipe line. And durability tests on the pipe line system under high injection pressure using a test rig are also described. Regarding durability tests, several measures have been taken for the injection pipe. As a result, the authors have found that the best solution for the injection pipe is a composite pipe made with SUS and steel.
Technical Paper

An Observation of Combustion Phenomenon on Heat Insulated Turbo-Charged and Inter-Cooled D.I. Diesel Engines

1986-09-01
861187
A current unmodified and modified engines with different amounts of thermal insulation have been used to generate data from which changes in bsfc, cooling loss, emissions, exhaust loss were determined. Since legislative requirement exists for allowable emission of NOx, fuel injection timing and other controllable factors were adjusted to maintain constant NOx emission except a test of influence on NOx emission according to the rate of heat insulation (adiabaticity). The effect of higher combustion temperature on the combustion phenomena is discussed.
Technical Paper

Effects of Fuel Injection Pressure and Fuel Properties on Particulate Emissions from H.D.D.I. Diesel Engine

1988-09-01
881255
For the 1990's diesel engines, particulate control has been an important problem. The purpose of this paper is to discuss emission control needs for heavy duty diesel truck engines for the 1990's. This paper will focus on the factors such as fuel injection pressure and fuel properties which most affect particulate emission. The characteristics of diesel spray in the atmosphere and also actual combustion of a turbocharged and charge-cooled H.D. D.I diesel engine were studied as a function of injection pressure ranging from 50 to 150 MPa. Experimental results show that high pressure injection improves the atomization and air entrainment. Though Bosch smoke level, fuel consumption and combustion period decreased with the rise of injection pressure, particulate emission in EPA transient test cycle did not decrease dut to an increase of SOF.
Technical Paper

A Study on Combustion of High Pressure Fuel Injection for Direct Injection Diesel Engine

1988-02-01
880422
Characteristics of diesel combustion with high pressure fuel injection were investigated, using a supercharged and charge air cooled single cylinder engine. Observation and analysis of combustion was performed using high speed schlieren photography at a definite low level NOx emission, while varying the parameters of both injection pressure and swirl ratio. Engine performance at a high injection pressure was evaluated in combination with shallow dish type combustion chamber and 8 hole nozzle. Two different intake ports (higher and lower swirl ratio) were used for the evaluation. Conventional injection system in combination with toroidal cavity and 4 hole nozzle was compared as a base line. It is generally said that quiescent combustion system is suitable for higher injection pressure configuration. According to the observed result of combustion photographs, however, higher swirl ratio shows better mixing than a lower swirl ratio, which was also confirmed by the performance test.
Technical Paper

Development of J-Series Engine and Adoption of Common-Rail Fuel Injection System

1997-02-24
970818
Hino has developed new J-series medium-duty diesel engines for trucks and buses. The new J-series comprises four, five and six-cylinder engines with the same cylinder bore and stroke and with both naturally aspirated and charge air cooled. Both output and torque have been enhanced along with fuel efficiency in an engine that is lighter and more compact than ever and reaches new heights of durability and reliability. J-series engine features a 4-valve system and OHC valve train design, which achieved an uniform combustion by a centered nozzle and combustion chamber design. This decreases the maximum combustion temperature and hence improved the NOx,smoke and PM emissions. And a reduced pumping loss results in improving the fuel consumption. J-series engines thus meet the Japanese 1994 emission regulations. Another feature is a fully electronically controlled common-rail fuel injection system, which is equipped in a specified engine of naturally aspirated 6 cylinder.
X