Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Technical Paper

Ignition and Combustion Simulation in HCCI Engines

2006-04-03
2006-01-1522
Combustion simulation is an effective tool in overcoming the issues associated with gasoline HCCI engines, controlling ignition timing and extending the operating range. The research discussed in this paper commenced by optimizing the reaction mechanism from the perspective of ignition delay using the genetic algorithm (GA) method. Simulations employing the optimized reaction mechanism were then able to more accurately reproduce the ignition timing of iso-octane and primary reference fuels (PRF). Ignition times obtained from simulations showed excellent correlation with ignition times measured using these fuels in shock tube experiments, and in engines with both homogeneous and non-homogeneous fuel distributions. The use of the PRF mechanism for gasoline with an equivalent octane number enables excellent reproduction of ignition timing even when EGR is employed.
X