Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study on HCCI-SI Combustion Using Fuels Ethanol Containing

2007-10-29
2007-01-4051
Bio-ethanol is one of the candidates for automotive alternative fuels. For reduction of carbon dioxide emissions, it is important to investigate its optimum combustion procedure. This study has explored effect of ethanol fuels on HCCI-SI hybrid combustion using dual fuel injection (DFI). Steady and transient characteristics of the HCCI-SI hybrid combustion were evaluated using a single cylinder engine and a four-cylinder engine equipped with two port injectors and a direct injector. The experimental results indicated that DFI has the potential for optimizing ignition timing of HCCI combustion and for suppressing knock in SI combustion under fixed compression ratio. The HCCI-SI hybrid combustion using DFI achieved increasing efficiency compared to conventional SI combustion.
Technical Paper

Development of Highly Durable Optical Probe for Combustion Measurement

2015-04-14
2015-01-0759
In the real site of engine development, new means are required for optical measurements under a wide variety of conditions including high-loaded operation. We have accordingly developed the new optical probe having less restriction when installing onto the engine as well as having high durability. The shape of connector end of newly developed optical probe that fits to the engine is interchangeable with the M5 sensor used for in-cylinder pressure measurement. The optical module of the optical probe can also be installed in the M10 spark plug or the M8 glow plug. The durability of the newly developed optical probe is; heat up to 400°C, pressure up to 25 MPa, and vibration up to 50 G. The durability of the optical probe was assessed using the engines of commercially available motorcycles. The 110 cm3 engine was used for the time-wise assessment. The 150 cm3 engine was used for the environment-wise assessment. Either one is a single cylinder engine.
X