Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Injector Nozzle Hole Geometry on Particulate Emissions in a Downsized Direct Injection Gasoline Engine

2017-09-04
2017-24-0111
In this study, the effect of the nozzle tip geometry on the nozzle tip wetting and particulate emissions was investigated. Various designs for the injector nozzle hole were newly developed for this study, focusing on the step hole geometry to reduce the nozzle tip wetting. The laser induced fluorescence technique was applied to evaluate the fuel wetting on the nozzle tip. A vehicle test and an emissions measurement in a Chassi-Dynamo were performed to investigate the particulate emission characteristics for injector nozzle designs. In addition, the in-cylinder combustion light signal measurement by the optical fiber sensor was conducted to observe diffusion combustion behavior during the vehicle test. Results showed that the step hole surface area is strongly related to nozzle tip wetting and particulate emissions characteristics. Injectors without the step hole and with a smaller step hole geometry showed significant reduction of nozzle tip wetting and number of particulate emissions.
Technical Paper

Development of High Efficiency Gasoline Engine with Thermal Efficiency over 42%

2017-10-08
2017-01-2229
The maximum thermal efficiency of gasoline engine has been improving and recently the maximum of 40% has been achieved. In this study, the potential of further improvement on engine thermal efficiency over 40% was investigated. The effects of engine parameters on the engine thermal efficiency were evaluated while the optimization of parameters was implemented. Parameters tested in this study were compression ratio, tumble ratio, twin spark configuration, EGR rate, In/Ex cam shaft duration and component friction. Effects of each parameter on fuel consumption reduction were discussed with experimental results. For the engine optimization, compression ratio was found to be 14, at which the best BSFC without knock and combustion phasing retardation near sweet spot area was showed. Highly diluted combustion was applied with high EGR rate up to 35% for the knock mitigation.
Journal Article

An Experimental Study on the Effect of Stroke-to-Bore Ratio of Atkinson DISI Engines with Variable Valve Timing

2018-04-03
2018-01-1419
In this study, fundamental questions in improving thermal efficiency of spark-ignition engine were revisited, regarding two principal factors, that is, stroke-to-bore (S/B) ratio and valve timings. In our experiment, late intake valve closing (LIVC) camshaft and variable valve timing (VVT) module for valve timing control were equipped in the single-cylinder, direct-injection spark-ignition (DISI) engine with three different S/B ratios (1.00, 1.20, and 1.47). In these three setups, displacement volume and compression ratio (CR) were fixed. In addition, the tumble ratio for cylinder head was also kept the same to minimize the flow effect on the flame propagation caused by cylinder head while focusing on the sole effect of changing the S/B ratio.
X