Refine Your Search

Topic

Author

Search Results

Technical Paper

Appropriate Damping Loss Factor of Vehicle Interior Cavity for Valid Application of Statistical Energy Analysis

2020-09-30
2020-01-1524
It is known that SEA is a rapid and simple methodology for analyzing complex vibroacoustic systems. However, the SEA principle is not always valid and one has to be careful about the physical conditions at which the SEA principle is acceptable. In this study, the appropriate damping loss factor of the vehicle interior cavity is studied in the viewpoint of the modal overlap factor of the cavity and the decay per mean free path (DMFP) of the cavity. Virtual SEA tests are performed with an FE model combination, which is suggested by a previous study of Stelzer et al. for the simulation of the sound transmission loss (STL) of vehicle panel structure. The FE model combination is consisting of the body in white (BIW), an acoustical-excited hemisphere-shaped exterior cavity, and the interior cavity. It is found that the DMFP of the interior cavity is appropriate between 0.5 ~ 1 dB for applying SEA principle.
Technical Paper

A Study on the Design and Development of an Integrated 48V Motor with Motorized Internal Combustion Engine

2020-04-14
2020-01-0446
The electrification of the internal combustion engine is an important subject of future automotive technology. By using a motorized internal combustion engine, it is possible to recover waste energy by regeneration technology and to reduce various losses that deteriorate the efficiency of the internal combustion Engine. This paper summarizes the results of the development of an engine-integrated motor that can be applied to a 48V mild hybrid system for motorization of an internal combustion engine. Like the 48V MHSG-mounted mild hybrid system designed to replace the generator in the auxiliary belt system, the motorized internal combustion engine is designed with the scalability as the top priority to minimize the additional space for the vehicle and to mount the same engine in various models.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

2007-05-15
2007-01-2251
In this research, the influence of tire size and shape on sound radiation in the mid-frequency region was studied. First, the relationship between the structural wave propagation characteristics of a tire excited at one point and its sound radiation was identified by using FE and BE analyses. Then, by using that relationship, the effect of modifying a tire's aspect ratio, width and wheel diameter on its sound radiation between 300 Hz and 800 Hz was investigated. Finally, an optimization of the sound radiation was performed by modification of the tire structure and shape. It was found that most of a tire's structural vibration does not contribute to sound radiation. In particular, the effective radiation was found to occur at the frequencies where low wave number components of the longitudinal wave and the flexural wave first appear.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

The Study for the Improvement of On-Center Feel with MTS Technique

2007-04-16
2007-01-0990
On-center feel is a multivariate problem that a performance is represented using put-together several sub-characteristics such as torque feedback, response, torque linearity, hysteresis, returnability, etc. For the improvement of a multivariate problem, multi objective optimization should be carried out. However each characteristic which ignores correlation between characteristics is usually optimized up to now. The objective of this research, Mahalanobis Taguchi System (MTS) technique is grafted to on-center steering feel to obtain the efficient improvement. MTS technique can optimize the unified on-center index which is generated in consideration of correlation between characteristics. In this research, first an effective value of MTS technique is verified with on-center steering feel which has the multivariate characteristic. Second, on-center steering feel is improved using MTS technique and Design of Experiments (DOE).
Technical Paper

Test Method Development and Understanding of Filter Ring-off-Cracks in a Catalyzed Silicon Carbide (SiC) Diesel Particulate Filter System Design

2008-04-14
2008-01-0765
As the use of diesel engines increases in the transportation industry and emission regulations tighten, the implementation of diesel particulate filter systems has expanded. There are many challenges associated with the design and development of these systems. Some of the key robustness parameters include regeneration, efficiency, fuel penalty, engine performance, and durability. One component of durability in a diesel particulate filter (DPF) system is the filter's ability to resist ring-off-cracking (ROC). ROC is described as a crack caused primarily by thermal gradients, differentials, and the resulting stresses within the DPF that exceed its internal strength. These cracks usually run perpendicular to the substrate flow axis and typically result in the breaking of the substrate into separate halves.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Numerical Study of Combustion Processes and Pollutant Formation in HSDI Diesel Engines

2004-03-08
2004-01-0126
The Representative Interactive Flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot and NOx formation. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the Eulerian Particle Flamelet Model using the multiple flamelets has been employed. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on turbulence-chemistry interaction.
Technical Paper

The Experimental Study on the Body Panel Shape to Minimize the Weight of the Damping Material

2003-05-05
2003-01-1715
The experimental study on the automotive body panel shape has researched a way to reduce the damping material. Among each differently designed panel shapes, the curved panel shape, with high rigidity, or dynamic stiffness, and uneven deformation mode, has found to most reduce the vibration energy and damping material application. This study shows how could the panel shape influence the NVH performance, which would be measured according to several specifically designed panel shapes in order to compare with the conventional bead panel. And this research proposes the way to optimize the damping material to minimize its weight.
Technical Paper

Improvement of Fuel Economy and Transient Control in a Passenger Diesel Engine Using LP(Low Pressure)-EGR

2011-04-12
2011-01-0400
Diesel engines are the most commonly used power train of the freight and public transportations in the world. From the viewpoint of global warming restraint, however, reduction of exhaust emissions from the diesel engine is urgent demand. Stringent emission regulations are being proposed with growing concern on NOx, PM and CO2 emissions. Future emission regulations require advanced emission control technologies, such as SCR(Selective Catalytic Reduction), LNT(Lean NOx Trap) and EGR(Exhaust Gas Recirculation). The EGR is a commonly used technique to reduce emission. In this study, a LP-EGR(Low Pressure Exhaust Gas Recirculation) system was investigated to evaluate its potential on emission reduction and fuel economy improvement, especially for a passenger diesel engine. A 3.0ℓ diesel engine equipped with the LP-EGR system was tested using an in-house control algorithm.
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Technical Paper

An Improvement Research of Under-floor of Midsize Sedan-Focusing on 2010 New YF Sonata Development Examples-

2011-04-12
2011-01-0772
Hyundai Kia Motors started developing the under-floor of YF sonata, the base platform for mid-to-large size sedans, in order to reduce weight and improve body performance. For local dynamic rigidity, there are design improvement and additional support structures at suspension mounting area. The strength at the joint where longitudinal and transverse members meet is increased to improve the overall body stiffness, and also the riding comfort and handling. Impact performance and safety is also improved by straightening the major structural members and strengthening the joint areas, efficiently absorbing and inducing the impact energy through load paths. As the body of a vehicle is the constitution of numerous parts, increased strength at the joints and major structural members with more linear profiles have played crucial roles in the improvement in overall body performance.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

A Dynamic GUI Platform for Bluetooth Automotive Application Voice Communication Package

2018-04-03
2018-01-0023
In this paper, a reconfigurable object-oriented simulator is proposed to analyze the performance of Bluetooth Voice Communication Package (VCP) for telecom purposes like hands-free vehicular communication. It consists of a graphical user interface (GUI) for research or validation engineers to investigate system specific performance. For example, a research engineer can utilize this GUI to analyze a system performance using different noise reduction filtering techniques in vehicular hands-free applications. Also, a validation engineer can utilize this GUI to evaluate vehicular Bluetooth audio quality for different vehicles at different driving conditions (e.g. speeds, fan levels, etc.). The proposed Bluetooth VCP model consists of modules like Audio Equalization (EQ), Acoustic Echo Canceller (AEC), and Noise Suppression (NS). This dynamic GUI platform provides the scope to add and analyze new proposed filtering techniques.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Technical Paper

A Research on Autonomous Vehicle Control in Track Beyond Its Limits of Handling

2021-04-06
2021-01-0977
This paper presents the research related to the self-driving system that has been actively carried out recently. Previous studies have been limited to ensure the path following performance in linear and steady state-alike handling region with small lateral acceleration. However, in the high speed driving, the vehicle cornering response is extended to nonlinear region where tire grips are saturated. This requires a technology to create the driving path for minimum time maneuvering while grasping the tire grip limits of the vehicle in real time. The entire controller consists of three stages-hierarchy: The target motion is determined in the supervisor phase, and the target force to follow the target behavior is calculated in the upper stage controller. Finally, the lower stage controller calculates the actuator phase control input corresponding to the target force.
Technical Paper

Improvement of Durability in HSDI Diesel Cylinder Head

2005-04-11
2005-01-0655
In order to cope with new exhaust emission regulations, automotive industry is interested in research and development of HSDI (High Speed Direct Injection) diesel engines with common rail systems. Since HSDI diesel engine operates under highly loaded condition due to increased power output, cylinder head of HSDI diesel engine is susceptible to high cycle fatigue cracks. In this study, FE analysis was used to find the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. In order to improve the durability of HSDI diesel cylinder head, the modifications of cylinder head and head bolt pre-load were investigated. Experiments were performed to prove the existence of residual stress created during the heat treatment of cylinder head. The results of experiments showed that residual stress can affect the durability of HSDI diesel cylinder head.
Technical Paper

Control of Diesel Catalyzed Particulate Filter System I (The CPF System Influence Assessment According to a Regeneration Condition)

2005-04-11
2005-01-0661
Environmental standards concerning Suspended Particulate Matter (SPM) are continuously becoming stricter. The light-duty diesel passenger car market is rapidly increasing due to performance improvements and the economic advantages of the diesel engine. To meet EURO 4 diesel passenger car emission regulations, regeneration experiments of a catalyzed particulate filter (CPF) system have been performed with 2.0L common-rail diesel engine. For effective regeneration of the CPF system, we investigated the effects of various regeneration conditions on the system. Conditions such as exhaust gas temperature, oxygen/hydrocarbon concentrations, gas compositions, etc. were investigated. We found that the regeneration efficiency was improved when the exhaust gas temperature increased to more than 700°C during CPF regeneration using engine post injection. An additional amount of post injection increased the exhaust gas temperature and residual hydrocarbon content.
Technical Paper

Prediction and Optimization of Blocked Force Changes of a Suspension System Using Bush Stiffness Injection Method

2022-06-15
2022-01-0956
Automotive OEMs have introduced a new development paradigm, modular architecture development, to improve diversity quality and production efficiency. It needs solid fundamentals of system-based performance evaluation and development for each system level and single component level. When it comes to NVH development, it is challenging to realize the modular concept because noise and vibration should be transferred through various transfer path consisting of many parts and systems, which interact with each other. It is challenging for a single system of interest to be evaluated independently of the adjacent parts and environments. In this study, a new system-based development process for a vehicle suspension was investigated by applying blocked force theory and FRF-based dynamic substructuring. The objective is to determine the better dynamic stiffness distribution of many bushes installed in a suspension system in the frequency range corresponding to road noise.
X