Refine Your Search


Search Results

Viewing 1 to 18 of 18
Technical Paper

Analysis of Muscle Fatigue for Urban Bus Drivers using Electromyography

Professional bus drivers are highly exposed to physical fatigue and work-related injuries because driving task includes complicated actions that require a variety of ability and cause extreme concentration or strain. For this reason, there has always been some sense of concern regarding driver fatigue, especially for drivers of commercial vehicles. In this study, we have tried to analyze quantitative fatigue degree of urban bus drivers by measuring their physiological signals. The investigation is made up of the following approaches: a traditional questionnaire survey and video-ethnographic method with 4-way cameras. The close-circuit cameras are installed to observe the upper and lower body of real drivers when they are in driving or even resting. This approach can help to understand urban bus drivers' behaviors and fatigue-related issues. Based on the video-ethnographic investigation results above, we have got certain patterns of drivers.
Technical Paper

Multidimensional Measure of Perceived Shift Quality Metric for Automatic Transmission Applying Kansei Engineering Methods

This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

The Newly Developed Suspension of Hyundai SantaFe

This paper introduces newly developed suspension system for the all-new SantaFe model of Hyundai Motor Company which will be on the market this year. The new suspension of the all-new SantaFe has been developed to give better handling and driving confidence to a driver compared to the previous model while maintaining a good ride experience. To achieve these targets, the suspension has been fully changed and finely adjusted. The compliance characteristics have been contrasted to those of the previous model. Also, the crash performance and package efficiency which are related to suspension layout has been considered without limitation of suspension performance. Based on the customer’s voice of market, the suspension of the newly developed SantaFe has tried to fit the various customer’s demands.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Occupant-to-Occupant Interaction and Impact Injury Risk in Side Impact Crashes

To date, efforts to improve occupant protection in side impact crashes have concentrated on reducing the injuries to occupants seated on the struck side of the vehicle arising from contact with the intruding side structure and/or external objects. Crash investigations indicate that occupants on the struck side of a vehicle may also be injured by contact with an adjacent occupant in the same seating row. Anecdotal information suggests that the injury consequences of occupant-to-occupant impacts can be severe, and sometimes life threatening. Occupant-to-occupant impacts leave little evidence in the vehicle, and hence these impacts can be difficult for crash investigators to detect and may be underreported. The objective of this study was to evaluate the risk of impact injury from occupant-to-occupant impacts in side impact vehicle crashes. The study examined 9608 crashes extracted from NASS/CDS 1993-2006 to investigate the risk of occupant-to-occupant impacts.
Technical Paper

Optimal Route Planning Algorithm Based on Real Traffic Network

In order to perform the Optimal Route Planning avoiding traffic congestion, the structural elements (Rode type, Link type, Facilities type, Lane number, Turning type) in digital map and real-time traffic information are required. However, subjectively tuned cost weights of these elements, non theoretical relationship, and partially supported real-time traffic information that are mostly used for this implementation are not enough to satisfy. Therefore, in this research, by analyzing the relationship between the previously acquired traffic information history for some period of time and elements in digital map, we introduce the reasonable traffic information model that makes to estimate the speed information. Including the estimated speed, all the important factors of map database and the driver's preference, finally we made the cost model.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
Journal Article

Expanded Human Choice based on Duty/Demand Cycles for In-Wheel Motors in Electric Vehicles

In order to design the in-wheel motor (IWM) for Electric Vehicles (EV), it is necessary to analyze the desired (expected) duty cycle at a higher performance level in order that the IWM becomes commercially relevant. The duty cycle may be representative of different segments of the customer base. Or, the individual customer may wish to have a set of IWMs that uniquely meet his/her measured “demand” cycle for a balance of drivability and efficiency. Questions then arise: How to measure the demand cycle of an individual? What 2 or 3 standard duty cycles should be offered as customer choices for their vehicle? Should the IWM represent multiple speed domains to enhance efficiency and drivability? Can the vehicle be updated rapidly 2 to 3 years after purchase? Etc. In this paper, we lay the groundwork to answer these types of customer questions for an EV with four independent IWMs.
Technical Paper

Study of Active Steering Algorithm Logic in EPS Systems by Detecting Vehicle Driving Conditions

Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
Journal Article

Study on Basic Principles of Operation Noise of Wiper System on Vehicle

The wiper system consists of a motor, linkage, arm, and blade, which provides a clear front view to the driver by removing rain, snow, and foreign matter from the windshield glass. It is a system component that requires a robust design to meet system rigidity, scrubbing performance, and operating noise to any external conditions to provide the driver with a front view. In recent years, however, customer complaints about wiper noise have increased as automobile engine and noise levels have decreased. Based on the analysis of wiper noise, this paper presents quantitative judgment criteria for various wiper noises. In addition, we predict the change of wiper noise to environmental factors through the sound field analysis and propose the solution.
Technical Paper

A Study on Improvement of Sitting Posture Stability for Heavy Truck Drivers

The driver’s seat in heavy trucks is designed for an upright driving posture with narrow back and cushion angles; thus, the seatback offers very little support. This makes the sitting posture prone to shifting during long trips, leading to loss of comfort and increase in fatigue. Sitting posture stability allows initial posture to be maintained during long drives, and the lack of stability causes fatigue and body pain during the drive. This study confirmed that enhancement of sitting posture stability of the driver’s seat in heavy trucks requires appropriate support from the cushion. The study also analyzed the support characteristics of each part of the cushion, and presented development guidelines of new cushion. Although subjective assessments of sitting posture stability have been performed, this study presented a method for quantitative and efficient assessment of sitting posture stability using the PAM-COMFORT simulation tool and virtual testing.
Technical Paper

Development of Mass Producible ANC System for Broad-Band Road Noise

The mass producible broad-band ANC system for road noise is developed with fully digital control system. For this configuration, installation packages are intensively considered by minimizing size of the controller, simplifying wiring system and implementing virtual microphone techniques. Virtual microphone technique enables error microphone to be installed in remote position of driver’s ear, and therefore, increases installation degree of freedom significantly. To enhance noise control performance with the minimum latency, filter design of FxLMS algorithm is optimized while additional audio compensation techniques are applied to maintain audio performance of amplifier. The present ANC system is equipped to HMC (Hyundai Motor Company) new release of hydrogen driven vehicle, which is introduced in the technology promotion event in Pyeongchang Olympic 2018.
Technical Paper

Experimental and Numerical Study on Speaker Design of Active Pedestrian Alerting System (APAS) in Hybrid and Pure Electric Vehicles

APAS refers to a low speed sound warning system of electric vehicles, which emits alerting sound only to target pedestrians by sound focusing techniques with array of speakers and object detective camera. In the present study, experimental and numerical investigations are conducted in designing speaker part and array of APAS with consideration of three main performance matrices; HEV/EV warning sound regulations in Europe and U.S., pedestrian awareness, and driver’s noise comfort. The present APAS speaker consists of back enclosure, wave guide and front grill. Each of these components plays an important role for characterizing frequency emphasis and sound directivity. The main impedance frequencies of the speaker are determined by considering warning sound regulations and also by analyzing acoustic frequency response at in/outside of a vehicle.
Technical Paper

A Study of Suspension Tightening Torque on the R&H Performance of High Performance Vehicles

Suspension is a system which operates dynamically according to road condition unlike other system statically mounted to the body. Especially this is more remarkable in high performance vehicle because there are more high inputs from road to suspension than normal vehicle. For this reason, the tightening torque of suspension system of high performance vehicle is more important than other systems and normal vehicle. To support the clamping between parts against force from road when cornering, optimized tightening torque is required to maximize R&H performance. For this optimization, it should be conducted first to comprehend how much performance effects on vehicle by tightening torque. This paper presents relationship between tightening torque of suspension parts hardware and R&H performance.
Technical Paper

Improvement of Steering Performance Using Steering Rack Force Control

Drivers continually require steering performance improvement, particularly in the area of feedback from the road. In this study, we develop a new electrically-assisted steering logic by 1) analyzing existing steering systems to determine key factors, 2) modeling an ideal steering system from which to obtain a desirable driver torque, 3) developing a rack force observer to faithfully represent road information and 4) building a feedback compensator to track the tuned torque. In general, the estimator uses the driver torque, assist torque and other steering system signals. However, the friction of the steering system is difficult to estimate accurately. At high speed, where steering feeling is very important, greater friction results in increased error. In order to solve this problem, we design two estimators generated from a vehicle model and a steering system model. The observer that uses two estimators can reflect various operating conditions by using the strengths of each method.
Technical Paper

A Development of the Model Based Torque Feedback Control with Disturbance Observer for Electric Power Steering System

Electric Power Steering (EPS) needs to meet both functional and stability requirements, it plays significant role in controlling vehicle motion. In the meantime, customers emphasizes natural steering feel which can reflect vehicle motion and road surface information while isolate unwanted external disturbances. In general, conventional EPS control algorithms exert assist torque according to driver torque measured from torque sensor, while maintaining stability using stabilizing compensator. However, there exist significant trade-off between steering feel and stability, because the performances of assist torque control and stabilizing compensator are strongly coupled. In this paper a torque feedback control algorithm for EPS system is proposed in order to overcome the trade-off, and to achieve more natural, robust steering feel.
Technical Paper

The Effect of Driver's Behavior and Environmental Conditions on Thermal Management of Electric Vehicles

Worldwide projections anticipate a fast-growing market share of the battery electric vehicles (BEVs) to meet stringent emissions regulations for global warming and climate change. One of the new challenges of BEVs is the effective and efficient thermal management of the BEV to minimize parasitic power consumption and to maximize driving range. Typically, the total efficiency of BEVs depends on the performance and power consumption of the thermal management system, which is highly affected by several factors, including driving environments (ambient temperature and traffic conditions) and driver's behavior (aggressiveness). Therefore, this paper investigates the influence of these factors on energy consumption by using a comprehensive BEV simulation integrated with a thermal management system model. The vehicle model was validated with experimental data, and a simulation study is performed by using the vehicle model over various traffic scenarios generated from a traffic simulator.