Refine Your Search

Topic

Author

Search Results

Technical Paper

Appropriate Damping Loss Factor of Vehicle Interior Cavity for Valid Application of Statistical Energy Analysis

2020-09-30
2020-01-1524
It is known that SEA is a rapid and simple methodology for analyzing complex vibroacoustic systems. However, the SEA principle is not always valid and one has to be careful about the physical conditions at which the SEA principle is acceptable. In this study, the appropriate damping loss factor of the vehicle interior cavity is studied in the viewpoint of the modal overlap factor of the cavity and the decay per mean free path (DMFP) of the cavity. Virtual SEA tests are performed with an FE model combination, which is suggested by a previous study of Stelzer et al. for the simulation of the sound transmission loss (STL) of vehicle panel structure. The FE model combination is consisting of the body in white (BIW), an acoustical-excited hemisphere-shaped exterior cavity, and the interior cavity. It is found that the DMFP of the interior cavity is appropriate between 0.5 ~ 1 dB for applying SEA principle.
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

Noble Materials for Thin-Walled Bumper Fascia with Enhanced Processibility and Dimensional Stability

1998-02-01
980105
A new noble material for automotive bumper fascia has been developed by compounding of ethylene-propylene block copolymers with ethylene-α-olefin copolymers and some additives. Also mineral fillers are added, if necessary. This material is suitable for injection molding of large parts including automotive bumper fascia. By using selected rubbers which have proper melt viscosity, molecular weight, and co-monomer content, and adding modified polymer containing polar group, it has enhanced processibility and paintability maintaining general properties such as tensile strength, impact strength at low temperature, and thermal and UV stability. The remarkable characteristics of this material is good processibility compared to the conventional TPOs. This material has especially high melt flow index(20∼30g/10min at 230°C) and stable flow behavior at the processing conditions.
Technical Paper

A Study on the Advanced Technology Analysis Process of Steering System for Idle Performance

2007-05-15
2007-01-2339
This paper describes the optimal design process of the steering column system and the supporting system. At the initial concept stage of development process, a design guide is proposed to obtain sufficient stiffness of the steering system while reducing idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, in which separated vibration modes among systems by applying Vibration Mode Map at the initial stage of design process. This study also makes it possible to provide design guideline for optimal dynamic damper system using CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to vehicle model to analyze the relation between the frequency and the sensitivity of steering column system. This analysis methodology enables target performance achievement in early design stage and reduction of damper tuning activity after proto car test stage.
Technical Paper

A Study on the Distortion Characteristic Due to Spot Welding of Body structure Assembly for Passenger Car

2002-07-09
2002-01-2022
In this paper, the distortion analysis in spot welded area of car body - front side member, it is found out that the optimum condition for panel assembly is closely related to the welding sequence, location of clamping system, number, shape and welding force. The distortion resulting from welding sequence is minimized starting from the surroundings of the clamping system and in the way that the value of the welding force is from large to small. The MCP is determined from the positions inducing the minimum distortion in panel through calculating the deformation and reacting force of the panel. The welding force originating from the manufacturing tolerance of assembly is a critical design factor determining the welding sequence and the clamping system that yield minimum distortion in spot welding of body panel.
Technical Paper

Evaluation of Collapse Absorption Capability for Hydroformed Tubes

2002-07-09
2002-01-2130
The tube hydroforming technology (THF) has been extensively used as auto-body structural members such as engine cradle, frame rail etc. in order to meet the urgent need of vehicle weight and cost reduction as well as high quality. In this paper we experimentally investigate the mechanical properties for hydroformed tubes with various bulging strains under the plane strain mode. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover the collapse absorption capacities are compared and discussed between as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube, because of its high yield strength due to strain hardening.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe

2013-04-08
2013-01-1211
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
Technical Paper

A Conceptual Analysis in the Early Design Stage for the Road-Noise Reduction using FRF-Based Substructuring

2022-03-29
2022-01-0312
NVH analysis based on numerical simulations before actual test vehicle is available becomes common process in the automotive industry. Furthermore, the latest work scope is extending even to conceptual study in the very early design stage, beyond traditional numerical simulations simply using 3-D CAD data. In case when reasonable information is provided at this very early vehicle development stage, a better decision on the design concept would be possible, and subsequent design process can be carried out in more efficient manner. The core of this trend is that it allows us to predict vehicle performance at the conceptual design stage without 3-D CAD data, and then, with this prediction, to suggest meaningful design directions for next stage. From this point of view, FRF-Based Substructuring (FBS) methodology has potential to be used as an appropriate tool for this purpose.
Technical Paper

Development of Crash Performance of the Front Bumper System by Adopting Target Cascading Scheme

2018-04-03
2018-01-1054
A practical application of the Target Cascading scheme for the development of the front bumper system of a passenger car is investigated in this paper. The Target cascading in the crash performance of vehicle developments requires a systematic approach, propagating from the desired vehicle-level performance target to appropriate specifications in a system- and/or component-level. To define the values of design specification in the front bumper system, three physical variables are derived by analyzing the vehicle-level performance of the frontal impact under the high-speed (56kph NCAP frontal impact) and the low-speed (15kph RCAR structural test) crash conditions. To ensure the sequential deformation in the high-speed frontal impact and to minimize the damage of the structural member in the low-speed crash, the maximum collapse load of a crash box should be smaller than the collapse load of a front side member.
Technical Paper

Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car

1998-02-01
980736
The thermoplastic automotive pulley has been developed and will be commercialized to high volume production that achieves cost saving and weight reduction over other automotive pulleys in the metal and thermosetting resin by Hyundai Motor Company. Design feature incorporated in this automotive pulley allow it to be manufactured and assembled onto the water pump more efficiently in consequence of design integration with the water pump and power steering pulley. However, the harsh environment and dynamic loads that the thermoplastic pulley has to withstand required extensive CAE analysis and testing of the molded parts and the standard glass reinforced PA was selected for the application to maximize cost savings. The key aspects of the plastic automotive pulley as well as its advantage are presented.
Technical Paper

Lateral Control of a Commercial Vehicle Using Feedback Augmented Disturbance Observer

2022-03-29
2022-01-0093
In the path following problem, a commercial vehicle has a delay of a hydraulic steering actuator and slow steering response accordingly. In addition, there are disturbances due to the harsh driving conditions of commercial vehicles. These disturbances may include uncertainties about actuator dynamic delay, modeling error and steering angle sensor offset. Designing a lateral controller with good performance that can overcome this problem is the key to successfully carrying out autonomous driving of commercial vehicles. Usually, it is difficult to consider disturbances with uncertainties in the geometric based control methods. Therefore, this paper proposed a lateral controller using feedback augmented disturbance observer for the commercial vehicle. First, a dynamics was modeled which can describe delay of the hydraulic actuator of the commercial vehicle. After that, a lateral controller was designed based on this dynamics model.
Technical Paper

Development of the Frontal Crash Performance of Vehicle by Simplified Crash Model

2022-03-29
2022-01-0871
This study presents a design methodology to predict the crash behavior of mid-size sedan with a simplified crash model. Without detailed conventional finite element, the simplified crash model can be adopted in the early stage of the vehicle design. Designing vehicle structure to satisfy crash performance target is highly complex problem in the early design stage, because of the nonlinear mechanical behavior, high number of degrees-of-freedom, lack of information and boundary conditions changing over the following development process. In this study, the front structure of the vehicle is divided into load-carrying members and the rigid element through the analysis of load-carrying mechanism, and its physical property (force-displacement relation) is parameterized as the property of the non-linear discrete beam element of the LS-DYNA. The effectiveness of the proposed research is shown by the example of the mid-size sedan.
Technical Paper

Optimization of Body D-Pillar Ring Structure

2023-04-11
2023-01-0604
The body stiffness plays a key role in vehicle performance, such as noise and vibration, ride and handling, durability and so on. In particular, a body D-pillar ring structure is the most sensitive affecting the body stiffness on vehicle with tail gate. Therefore, since D-pillar body ring structure for high stiffness and lightweight is required, an optimized design methodology that simultaneously satisfies the requirements was studied. It focused on a methodology that body engineering designers can optimize design parameters easily and quickly by themselves in the preceding stages of vehicle’s styling distribution and design conceptual planning. First, it is important to establish the body stiffness design strategy by predicting the body stiffness with the vehicle’s styling at early design stage. The methodology to predict body stiffness with the styling and body dimension specification parameters was introduced.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Technical Paper

The CAE Analysis of a Cylinder Head Water Jacket Design for Engine Cooling Optimization

2018-04-03
2018-01-1459
Hyundai's new engine is developed which optimize the cooling efficiency for knocking improvement and friction reduction. The cooling concepts for this purpose are 1) equalizing the temperature among cylinders by flow optimization, 2) cooling the required area intensively, 3) adopting ‘active flow control’ and 4) enlarging fuel economy at high speed range. In order to realize the cooling concept, 1) cross-flow, 2) compact water jacket & exhaust cooling, 3) flow control valve and 4) cylinder head with integrated exhaust manifold are considered. Improvement of knocking and friction reduction by increased cooling water temperature makes fuel efficiency possible. On the other hand, in order to strengthen the cooling around the combustion chamber and to reduce the deviation among the combustion chamber of cylinders, it is required to design the head water jacket shape accordingly.
Technical Paper

A Development of the Holographic Lighting

2019-04-02
2019-01-0846
A signal lamp performs a function to inform the position and behavior of the vehicle. And it represents a specific design identity of the vehicle or brand identity. Recently it implements the unique three-dimensional effect while using a LED. However, a number of LEDs and complex form of the lens shape have to be applied, so results in the size, weight, cost increase. In this study, the hologram technology that is an exemplary technique for implementing the described three-dimensional image is applied. With a hologram, it is possible to reproduce a complex shape three-dimensional image by using a hologram film. Therefore the number of parts can be reduced. And it is possible to copy the film has a mass production benefits.
Technical Paper

Development of Two-Shot Injection-Compression Soft Instrument Panel

2015-03-10
2015-01-0065
In order to reduce the cost and weight of the soft-foamed instrument-panel (IP), we developed the new IP which is made by the 2 kinds of injection methods. One is the compression-injection with back-foamed foil inserted, and the other is two-shot injection with the passenger-side airbag (PAB) door. We named it ‘IMX-IP’ which means that all components (‘X’) of the IP with different resins are made In a Mold. The development procedure of this technology was introduced (1) Design of the new injection mold through TRIZ application, (2) Optimization of the injection conditions and back foamed-foil for minimizing the foam loss and thickness deviation, (3) Development of CAE method for two-shot injection compression, (4) Reliability performance test and application to the mass production. The reduction of the processes through the two-shot molding with back foamed-foil inserted made it possible to enhance soft feeling on IP and reduce the cost and weight simultaneously.
Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

Analysis of Microorganism Causing Odor in an Air-Conditioning System

2015-04-14
2015-01-0354
This study has been conducted to analyze microbial diversity and its community by using a method of NGS(Next generation sequencing) technique that is not rely on cultivation for microbial community in an core evaporator causing odor of car air conditioner. The NGS without any cultivation method of cultivation, has been developed recently and widely. This method is able to research a microorganism that has not been cultivated. Differently with others, it can get a result that is closer to fact, also can acquire more base sequence with larger volume in relatively shorter time. According to bacteria population analysis of 23 samples, It can be known limited number of bacteria can inhabit in Evaporator core, due to small exposure between bacteria and evaporate, as well as its environmental characteristics. With the population analysis, only certain group of it is forming biofilm in proportion.
X