Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Study of Active Steering Algorithm Logic in EPS Systems by Detecting Vehicle Driving Conditions

2017-03-28
2017-01-1481
Conventional EPS (Electric Power Steering) systems are operated by one type of steering tuning map set by steering test drivers before being released to customers. That is, the steering efforts can't change in many different driving conditions such as road conditions (low mu, high mu and unpaved roads) or some specific driving conditions (sudden stopping, entering into EPS failure modes and full accelerating). Those conditions can't give drivers consistent steering efforts. This paper approached the new concept technology detecting those conditions by using vehicle and EPS sensors such as tire wheel speeds, vehicle speed, steering angle, steering torque, steering speed and so on. After detecting those conditions and judging what the best steering efforts for safe vehicle driving are, EPS systems automatically can be changed with the steering friction level and selection of steering optimized mapping on several conditions.
Technical Paper

Multidimensional Measure of Perceived Shift Quality Metric for Automatic Transmission Applying Kansei Engineering Methods

2013-04-08
2013-01-0336
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

Development of an Optimized Structure for Meeting Pedestrian Protection Requirements

2011-04-12
2011-01-0770
In recent years, pedestrian protection from passenger car impacts has become an important issue. In this study, a lower stiffener system has been implemented in order to reduce lower leg injuries. This system was developed using finite element analyses and impact testing. Injury criteria including bending angle, shear displacement, and deflection were studied in the analyses. These variables were optimized using a DOE (Design of Experiments) sensitivity analysis.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

2016-04-05
2016-01-1112
In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
Technical Paper

An Application of Magnesium Alloy to Passenger Air Bag Housing

2000-03-06
2000-01-1115
To achieve a mass goal and minimize the bell mouthing phenomenon of Passenger Air Bag Housing which takes place when the air bag is in explosive action and detrimental to the safety of passenger side because excessive canister bell mouthing may distort and crash the top surface of instrument panel, a study on the replacing process of a PAB housing to a different material and process was performed. The explosive action of current steel PAB housing was firstly analized to evaluate the reaction forces transferred through the PAB and find out the adaptable material for replacing process. Due to the properties among the die casting alloys, the AM60B alloy was chosen for our new material for PAB housing. Then, stress analysis by the finite element method was performed for a design modification of magnesium one piece housing.
Technical Paper

A Study on Optimization of the Multi-function Drive Plate for High Performance Engine

2007-04-16
2007-01-0798
The multi-function drive plate used for a high performance engine was developed by optimizing its structure, material and design features. To do so, the investigation of the load characteristics was done in order to increase FEA reliability. DFSS was utilized for optimizing the design features and defining the effect of geometric parameters on the durability. The durability of the optimized drive plate was verified by comparing the FEA and test results with other drive plates which were already verified. Finally, the real powertrain test was done to confirm its durability for a high performance engine.
Technical Paper

A Study on the Analysis Method for Optimizing Mounting Brackets

2006-04-03
2006-01-1480
Various optimization schemes have successfully been utilized to design mounting brackets of chassis components, especially suspension systems, in the large commercial vehicle development process. Depending on the design status, different optimization schemes, i.e. size, topology, and shape, are applied. There are two key elements that determine types of optimization schemes used, which are design freedom and available analysis time. First, in a case that the design is already frozen near the mass production, so that only minimal design change and time is allowed, the size optimization is attempted. Second, in the middle of the design process where relatively more room for the change is available, the topology optimization is adequate to carry out, based on the basic CAD model.
Technical Paper

A Study on the Advanced Technology Analysis Process of Steering System for Idle Performance

2007-05-15
2007-01-2339
This paper describes the optimal design process of the steering column system and the supporting system. At the initial concept stage of development process, a design guide is proposed to obtain sufficient stiffness of the steering system while reducing idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, in which separated vibration modes among systems by applying Vibration Mode Map at the initial stage of design process. This study also makes it possible to provide design guideline for optimal dynamic damper system using CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to vehicle model to analyze the relation between the frequency and the sensitivity of steering column system. This analysis methodology enables target performance achievement in early design stage and reduction of damper tuning activity after proto car test stage.
Technical Paper

A Study on the Characteristics of Vibration in Seat System

2003-05-05
2003-01-1603
The characteristics of vibration in the seat system are presented using the analysis of Finite Element Method (FEM). The Noise, Vibration and Harshness (NVH) performance should be managed from the viewpoint of tactile, acoustic and visual sense. Tactile response is the response of sub-systems, which is induced when the human body contacts steering wheel, footrest and seats. The seat modeling techniques have been developed and correlated with the modal test. The main modes in the seat system were analyzed and these seat modes were used to set the mode map (seat target) at the stage of full vehicle level. The sensitive region on seat mountings was defined through the design sensitivity analysis. Weight down design studies were performed.
Technical Paper

Design Optimization Analysis of Body Attachment for NVH Performance Improvements

2003-05-05
2003-01-1604
The ride and noise characteristics of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning. This paper presents the procedure of body attachment stiffness analysis, which contains the correlation between experimental test and FEA. It is concluded that the most important factors are panel thickness, section type and mounting area size. This procedure makes it possible to find out the weak points before proto car and to suggest proper design guideline in order to improve the stiffness of body structure.
Journal Article

A Study on the Role of TRIZ in DFSS

2012-04-16
2012-01-0068
The Design For Six Sigma (DFSS) process consists of four phases, identification & definition of opportunity, concept development, design optimization, and design verification. In the phase of concept development, TRIZ (Russian acronym for Theory of Inventive Problem Solving) is useful for creating new ideas from the present ideas, which includes the trimming strategy, the antidote strategy, and the picket fence strategy. In this paper, systems of a vehicle such as Variable Compression Ratio (VCR) engine, windshield wiper blade, and Continuously Variable Valve Actuation (CVVA) of engine, are selected and new concepts for each system are created by applying the previously mentioned three strategies. FMEA (Failure Mode and Effects Analysis), the latter part in the phase of concept development in DFSS, is conducted for newly generated concepts of systems that are mentioned above. As a result of FMEA, it is found that the wind lift of the wiper blade can be a serious problem.
Journal Article

Improvement of Virtual Vehicle Analysis Efficiency with Optimal Modes Selection in Flexible Multi-Body Dynamics

2013-04-08
2013-01-1193
In the analysis for durability or R&H performance with the full vehicle multibody models, the need for component flexibility is increasing along with demand for more precise full vehicle system. The component elastic deformations are usually expressed by modal superposition from component normal mode analysis with finite element model for reducing model size and simulation time. Although the simulation results of MBD analysis are more accurate according to increasing the number of flexible body and modes, the increasing of flexible components makes worse simulation time and convergence in MBD analysis. Especially, in the MBD analysis including a flexible upper body, in substitution for large number degree of freedom FE model such as trimmed body, it should take a few times longer than the case of rigid upper body This paper proposes the methods of reducing computational cost with adequate mode selections without the loss of simulation accuracy in the flexible MBD.
Technical Paper

Development of an Automated Seat Dimension Evaluation System

2019-04-02
2019-01-0401
The dimensions of an automobile seat are important factors affecting a driver’s seating comfort, fit, and satisfaction. In this regard, seat engineers put forth tremendous efforts to evaluate the dimensions of a product seat until the dimensions are consistent with the design reference in a computer aided design (CAD). However, the existing evaluation process is heavily reliant on seat engineers’ manual tasks which are highly repetitive, labor intensive, and time-demanding tasks. The objective of this study is to develop an automated system that can efficiently and accurately evaluate seat products by comparing estimated seat dimensions from a CAD model or a 3D scan model. By using the developed system, the evaluation time for comparing 18 seat dimensions on CAD and scan models has been substantially reduced to less than one minute, which is 99% time saving compared to two hours in the manual process.
X