Refine Your Search

Topic

Author

Search Results

Technical Paper

Improvement of Fuel Economy and Transient Control in a Passenger Diesel Engine Using LP(Low Pressure)-EGR

2011-04-12
2011-01-0400
Diesel engines are the most commonly used power train of the freight and public transportations in the world. From the viewpoint of global warming restraint, however, reduction of exhaust emissions from the diesel engine is urgent demand. Stringent emission regulations are being proposed with growing concern on NOx, PM and CO2 emissions. Future emission regulations require advanced emission control technologies, such as SCR(Selective Catalytic Reduction), LNT(Lean NOx Trap) and EGR(Exhaust Gas Recirculation). The EGR is a commonly used technique to reduce emission. In this study, a LP-EGR(Low Pressure Exhaust Gas Recirculation) system was investigated to evaluate its potential on emission reduction and fuel economy improvement, especially for a passenger diesel engine. A 3.0ℓ diesel engine equipped with the LP-EGR system was tested using an in-house control algorithm.
Technical Paper

Analysis of Muscle Fatigue for Urban Bus Drivers using Electromyography

2011-04-12
2011-01-0801
Professional bus drivers are highly exposed to physical fatigue and work-related injuries because driving task includes complicated actions that require a variety of ability and cause extreme concentration or strain. For this reason, there has always been some sense of concern regarding driver fatigue, especially for drivers of commercial vehicles. In this study, we have tried to analyze quantitative fatigue degree of urban bus drivers by measuring their physiological signals. The investigation is made up of the following approaches: a traditional questionnaire survey and video-ethnographic method with 4-way cameras. The close-circuit cameras are installed to observe the upper and lower body of real drivers when they are in driving or even resting. This approach can help to understand urban bus drivers' behaviors and fatigue-related issues. Based on the video-ethnographic investigation results above, we have got certain patterns of drivers.
Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
Technical Paper

Diesel/Gasoline Dual Fuel Powered Combustion System based on Diesel Compression Ignition Triggered Ignition Control

2013-04-08
2013-01-1718
The author's new approach, diesel and gasoline dual fuel powered combustion system based on diesel CI triggered ignition control, provides not only how key ideas extracted from LTC concept could be established in a small bore HSDI turbocharged diesel engine but also which mechanism works to bring almost same benefits as we have experienced in both conventional diesel combustion and LTC based advanced combustion systems like HCCI, PCCI and PPCI combustions. The combustion system presented in the paper physically combines both mixing controlled diesel compression ignition combustion and gasoline premixed charge combustion in one power generation cycle. Gasoline fuel in the system is provided by the conventional gasoline PFI system firstly into the cylinder in which premixed charge spreads out. In compression stroke, the exact amount of diesel fuel is injected into the highly diluted EGR ambient with premixed gasoline charge.
Technical Paper

Development of Polymer Composite Battery Pack Case for an Electric Vehicle

2013-04-08
2013-01-1177
A battery pack case of an electric vehicle was developed with a fibrous thermoplastic composite material. Due to cost effectiveness, long-fiber-reinforced thermoplastics by direct process (D-LFT) were adopted. PA6 (Polyamide 6)-based composites were processed using a D-LFT pilot machine at the temperature range between 250° and 290°. Glass and carbon fibers were added in the matrix varying the mixture ratio of the fibers while keeping the weight fraction 40%. The increase of carbon fibers in the mixture increased tensile modulus and strength, however, decreased Izod impacts strength. The fatigue life of developed composites was evaluated by fatigue tests in tension, which were over one million cycles at the maximum fatigue loading less than 60% of the composite strength. Associated with fiber orientation, anisotropic mechanical behavior was investigated in terms of flexural properties and mold shrinkage.
Technical Paper

Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe

2013-04-08
2013-01-1211
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
Technical Paper

A Study of LNT & Urea SCR on DPF System to Meet the Stringent Exhaust Emission Regulation

2014-10-13
2014-01-2810
In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Technical Paper

Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions

2006-10-16
2006-01-3345
In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow which is dominant in current high performance gasoline engines has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to understand the effect of the tumble ratio on the part load performance and optimize the tumble ratio for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble ratio was measured, compared, and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV (Particle Image Velocimetry), and 3-Dimensional PTV (Particle Tracking Velocimetry). Engine dynamometer test was also conducted to find out the effect of the tumble ratio on the part load performance.
Technical Paper

Fatigue Strength Evaluation for the Leaf Spring of Commercial Vehicle Considering U Bolt Fixing Force

2007-04-16
2007-01-0853
Suspension system of vehicle is very important because it has an effect on ride comfort and safety. And the leaf spring is one of the major parts of commercial vehicle. By that reason it has to be designed to operate under severe condition to ensure enough endurance. But the traditional method for fatigue design needs repeated fatigue tests for each design according to its geometry, material, and operating condition. This means that a lot of time and money is needed for those tests. Thus, in this paper, a fatigue design method for leaf spring based on numerical analysis is proposed. At first, stress analysis is performed to get the stress under operation load or rig tests. And fatigue analysis is performed to get the fatigue life and to ensure the safety of leaf spring. Through this study, design parameters that play vital role in fatigue life of the leaf spring can be found out.
Technical Paper

Experimental Study on the Air Quality of Vehicle’s Cabin by Evaluating CO2 Concentration and Fine Dust on the Actual Road

2009-04-20
2009-01-0536
For a complete automotive HVAC system, it is desirable to keep good air quality control for the interior vehicle cabin. This experimental study for evaluating the CO2 concentration levels in a vehicle cabin was done on the roads in South Korea. Increasing levels of CO2 can cause a passenger to become tired, sleepy and cause headaches or discomfort. The study results shows that CO2 and fine dust concentration is a result of the number of passengers,_driving condition and HVAC user settings. The result from this investigation can be used to establish a development guide for air quality in a vehicle cabin.
Journal Article

Development of Fatigue Durability Analysis Techniques for Engine Piston using CAE

2009-04-20
2009-01-0820
A piston in a diesel engine is subject to the high pressure and the high thermal load. The high structural reliability is required to the piston in the automotive diesel engine and it is important to confirm the design parameters of piston in initial design stage. There are lots of research works proposing new geometries, materials and manufacturing techniques for engine pistons. But, the failures of piston occur frequently in development stage. Failure mechanisms are mainly fatigue related. This paper presents failure mechanisms of the high cycle fatigue and low cycle thermal fatigue cracks which occur on the piston during durability test using engine dynamometer. In this study, FE analysis was carried out to investigate the root cause of piston failure. The analysis includes the FE model of the piston moving system, temperature dependent material properties, mechanical and thermal loadings.
Technical Paper

Fatigue Life Estimation of Suspension Components using Statistical Method

2009-04-20
2009-01-0080
Depending on the scatter of material properties, geometrical shapes and load conditions, the fatigue life of mechanical components has wide range of scatter although they were tested under same conditions. This scatter is the main reason of different results between observed and predicted fatigue life. This study shows how to estimate the fatigue life distribution by analysis. Dominant factors for fatigue life distributions and their scatter could be obtained by comparing the analysis results and fatigue test results. Applying the scatter of these factors to fatigue analysis, it was possible to predict fatigue life distributions. This will improve the reliability of fatigue life estimation, therefore a more robust and reliable component design is possible.
Technical Paper

Control of Diesel Catalyzed Particulate Filter System I (The CPF System Influence Assessment According to a Regeneration Condition)

2005-04-11
2005-01-0661
Environmental standards concerning Suspended Particulate Matter (SPM) are continuously becoming stricter. The light-duty diesel passenger car market is rapidly increasing due to performance improvements and the economic advantages of the diesel engine. To meet EURO 4 diesel passenger car emission regulations, regeneration experiments of a catalyzed particulate filter (CPF) system have been performed with 2.0L common-rail diesel engine. For effective regeneration of the CPF system, we investigated the effects of various regeneration conditions on the system. Conditions such as exhaust gas temperature, oxygen/hydrocarbon concentrations, gas compositions, etc. were investigated. We found that the regeneration efficiency was improved when the exhaust gas temperature increased to more than 700°C during CPF regeneration using engine post injection. An additional amount of post injection increased the exhaust gas temperature and residual hydrocarbon content.
Technical Paper

Improvement of Durability in HSDI Diesel Cylinder Head

2005-04-11
2005-01-0655
In order to cope with new exhaust emission regulations, automotive industry is interested in research and development of HSDI (High Speed Direct Injection) diesel engines with common rail systems. Since HSDI diesel engine operates under highly loaded condition due to increased power output, cylinder head of HSDI diesel engine is susceptible to high cycle fatigue cracks. In this study, FE analysis was used to find the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. In order to improve the durability of HSDI diesel cylinder head, the modifications of cylinder head and head bolt pre-load were investigated. Experiments were performed to prove the existence of residual stress created during the heat treatment of cylinder head. The results of experiments showed that residual stress can affect the durability of HSDI diesel cylinder head.
Technical Paper

Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds

2005-04-11
2005-01-1688
A new heat-resistant cast iron alloy has been developed for the exhaust manifolds of new passenger-car diesel engines. This development occurred because operating demands on exhaust manifolds have increased significantly over the past decade. These demands are due to higher exhaust gas temperatures resulting from tighter emission requirements, improved fuel efficiencies, and designs for higher specific engine power. These factors have led to much higher elevated temperature strength and oxidation resistance requirements on exhaust manifold alloys. Additionally, thermal fatigue that occurs directly as a result of thermal expansions and mechanical constraint has become an increasingly important issue. The research detailed in this paper focused on the optimization of the chemical composition of a Si-Mo ductile iron to improve the mechanical and physical properties for use in an engine exhaust manifold.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Numerical Study of Combustion Processes and Pollutant Formation in HSDI Diesel Engines

2004-03-08
2004-01-0126
The Representative Interactive Flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot and NOx formation. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the Eulerian Particle Flamelet Model using the multiple flamelets has been employed. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on turbulence-chemistry interaction.
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
X