Refine Your Search


Search Results

Technical Paper

Development of Effective Exhaust Gas Heat Recovery System for a Hybrid Electric Vehicle

The success of improved fuel economy is the proper integration of thermal management components which are appropriately performed to reduce friction and wasted energy. The thermal management systems of vehicle are able to balance the multiple needs such as heating, cooling, or appropriate operation within specified temperature ranges of propulsion systems. Since the propulsion systems of vehicle have changed from a single energy source based on conventional internal combustion engine to hybrid system including more electrical system such as full type of hybrid electric vehicle or plug-in hybrid electric vehicles, a new transition associated with vehicle thermal management arises. More efficient thermal management systems are required to improve the fuel economy in the hybrid electric vehicles because of the driving of electric traction motor and the increase of engine off time. The decrease of engine operation time may not sustain the proper temperature ranges of engine and gearbox.
Technical Paper

Impact of Hilly Road Profile on Optimal Energy Management Strategy for FCHEV with Various Battery Sizes

This study investigates how hilly road profiles affect the optimal energy management strategy for fuel cell hybrid electric vehicle (FCHEV) with various battery sizes. First, a simplified FCHEV model is developed to describe power and energy flows throughout the powertrain and evaluate hydrogen consumption. Then, an optimal control problem is formulated to find the globally optimal energy management strategy of FCHEV over driving cycles with road elevation profile. In order to solve the optimal energy management problem of the FCHEV, Dynamic Programming, a dynamic optimization method, is used, and their results are analyzed to find out how hilly road conditions affect the optimal energy management strategies. The results show that the optimal energy management with a smaller battery tends to actively prepare (e.g. pre-charge/pre-discharge) for uphill/downhill roads in order not to violate the battery state of charge (SoC) bounds.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
Technical Paper

High Strength Light-Weight Valve Spring for Automotive Engine to Enhance Fuel Efficiency

High strength oil-tempered wire was developed to apply to light-weight valve spring for automotive engine. By adding Mo, V, B and Ni, tensile strength increased by 20% compared to the conventional oil-tempered wire. Higher tensile strength of wire enabled a constant of valve spring to lower by reducing the size of spring. As a result, reduction of spring constant lowers the load of spring, thereby enhancing fuel efficiency.
Technical Paper

A Study of LNT & Urea SCR on DPF System to Meet the Stringent Exhaust Emission Regulation

In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
Technical Paper

Energy Management Strategy of Hybrid Electric Vehicle using Stochastic Dynamic Programming

This paper is concerned with the energy management strategy of hybrid electric vehicle using stochastic dynamic programming. The aim is the control strategy of the power distribution for hybrid electric vehicle powertrains to minimize fuel consumption while maintaining drivability. The fuel economy of hybrid electric vehicle is strongly influenced by power management control strategy. Rule-based control strategy is popular strategy thanks to its effectiveness in real-time implementation, but rule should be designed and efficiency of entire drive trains is not optimized. Dynamic programming, one of optimization-based control strategy presents outstanding performance, but cannot be used as real-time control strategy directly, since its non-causal property and drawback that global optimal solution can only be obtained for specific driving cycle. In this paper, stochastic dynamic programming is applied to parallel hybrid electric vehicle to optimize vehicle performance in average sense.
Technical Paper

Development of Mild Hybrid City Bus with a Single Voltage Source of 28 V

The most popular issues nowadays in the automotive industry include reduction of environmental impacts by emission materials from automobiles as well as improvement of fuel economy. This paper deals with development of a ¡mild-hybrid¡ system for a city bus as an effort to increase fuel economy in a relatively reasonable expense. Three different technical tactics are employed; an engine is shut down at an engine idle state, a vehicle kinetic energy when the bus is decelerated is re-saved to a battery in the form of electricity, and finally the radiator cooling fan is operated by an electric motor using the saved electric energy with an optimal speed control. It has been demonstrated through the driving tests in a specific city mode, ¡Suwon city mode¡, that an average fuel economy is improved more than 12%, and the system can be a feasible choice in a city bus running in a city mode experiencing many stop and go¡s.
Technical Paper

Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions

In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow which is dominant in current high performance gasoline engines has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to understand the effect of the tumble ratio on the part load performance and optimize the tumble ratio for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble ratio was measured, compared, and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV (Particle Image Velocimetry), and 3-Dimensional PTV (Particle Tracking Velocimetry). Engine dynamometer test was also conducted to find out the effect of the tumble ratio on the part load performance.
Technical Paper

Development of Fuel Consumption of Passenger Diesel Engine with 2 Stage Turbocharger

High specific power, additional hardware and mapping optimization was done to achieve reduction of fuel economy for current engine in this study. 2 stage turbocharger with serial configuration was best candidate not only for high specific power at high engine speed but also for increase of low end torque for current engine. This increase of low end torque is important for development of transient characteristic of vehicle. DoE and efficient EGR Cooler was applied for optimization of fuel economy. DoE was useful for optimization of fuel consumption affected by various fuel injection parameters. This DoE was also efficient for matching optimal fuel economy after change of engine hardware. Performance improvement of engine with 2 stage turbocharger VGT was evaluated and additional development of fuel economy was performed in this study.
Technical Paper

Reduction of Interior Booming Noise for a Small Diesel Engine Vehicle without Balance Shaft Module

Applying BSM (Balance shaft module) is a very common and effective way to reduce the 2nd-order powertrain vibration which is caused by the ill-balanced inertia force due to the oscillating masses inside an engine. However, the adoption of a BSM can also produce undesirable things especially in cost, fuel economy, starting performance, and so on. Therefore, for small vehicles, in which case cost and weight are key factors at the development stage, it is often required to develop competitive NVH performance without the expensive apparatus like a BSM. In this paper, in order to develop interior noise and vibration of a 4-cylinder vehicle without a BSM, we analyzed the contribution of some transfer paths for powertrain vibration, and could reduce interior booming noise by tuning the dynamic characteristic of the engine mount which was one of the largest transfer paths.
Technical Paper

Development of High Wear Resistant and Durable Coatings for Al Valve Spring Retainer

The use of light-weight materials in automotive engine components has increased in order to achieve better fuel efficiency and engine performance. In this study, Al alloy (AI5056) valve spring retainer can reduce a weight by 63% in comparison to steel and improve the upper limit of engine speed by about 500rpm. The Al valve spring retainer was fabricated by cold forging and coated with hard anodizing, DLC (diamond like coating), cold spray and thermal spray for better wear resistance and durability. We conclude that among these materials the DLC coating improves the wear resistance of Al valve spring retainer and has a sufficient durability after endurance testing.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

Drivability Development Based on CoSimulation of AMESim Vehicle Model and Simulink HCU Model for Parallel Hybrid Electric Vehicle

Parallel Hybrid Electric Vehicle consists of internal combustion engine, engine clutch, motor, automatic transmission, Integrated Starter Generator (ISG), and battery. Due to hybridizations such as using engine clutch to disengage the internal combustion engine and omitting torque converter from the automatic transmission to increase fuel economy, drivability will not be same as conventional vehicle. To ensure drivability comparable to conventional vehicle, dynamic simulation has been utilized to foresee the drivability issues for the proposed hybrid system and ideas for improvements are tested in simulation. CoSimulation of AMESim vehicle model and Simulink Hybrid Control Unit (HCU) model has been used to test and improve HCU logic.
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Using Ultra-Capacitors as a Secondary Power Source

Hyundai motor company has developed a fuel cell hybrid vehicle that has ultra-capacitors as a secondary power source. The simulation of fuel cell vehicles allows the user to analyze various types of fuel cell systems and hybrid configurations before implementing into a real system and to reduce the development time and cost. Before implementing fuel cell vehicles, a fuel cell vehicle simulation model, that has component modularity and forward facing characteristics, was developed. The simulation model was used in designing the fuel cell hybrid vehicle to select component sizes and a hybrid configuration. The hybridization by using ultra-capacitors provided better fuel economy and power response than the hybridization by using batteries.
Technical Paper

Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds

A new heat-resistant cast iron alloy has been developed for the exhaust manifolds of new passenger-car diesel engines. This development occurred because operating demands on exhaust manifolds have increased significantly over the past decade. These demands are due to higher exhaust gas temperatures resulting from tighter emission requirements, improved fuel efficiencies, and designs for higher specific engine power. These factors have led to much higher elevated temperature strength and oxidation resistance requirements on exhaust manifold alloys. Additionally, thermal fatigue that occurs directly as a result of thermal expansions and mechanical constraint has become an increasingly important issue. The research detailed in this paper focused on the optimization of the chemical composition of a Si-Mo ductile iron to improve the mechanical and physical properties for use in an engine exhaust manifold.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
Technical Paper

Multi-Disciplinary Vehicle Styling Optimization: All at Once Approach for Stiffness, Light-Weight and Ergonomics with Analytical Model Based on Compartment Decomposition

The topology optimization made a great success in pure structural design in an actual industrial field. However, a lot of factors interact each other in a actual engineering field in highly complicated manner. The typical conceptual trade-off is that cost and performance, that is, since they are competing factors, one can't improve the specific system without consideration of interaction. The vehicle has lots of competing factors, especially like fuel economy and acceleration performance, mass and stiffness, roominess and cost, short front overhang and crash-worthiness and so on. In addition, they interact each other in a more complicated manner, that is, fuel economy has something to do with not only engine performance but also mass, roominess, stiffness, the length of overhang, trunk volume, etc. So, most of decision-makings have been made by management based on subjective knowledge and experience.
Technical Paper

Effects of VGT and Injection Parameters on Performance of HSDI Diesel Engine with Common Rail FIE System

Recently, high speed direct injection (HSDI) diesel engines are rapidly expanding their application to passenger cars and light duty commercial vehicles in western European market and other countries such as Korea and Japan. These movements are strongly backed by the technological innovations in the area of air charging and high pressure fuel injection systems. Variable geometry turbine (VGT) turbocharger, which could overcome the typical weak point of the existing turbocharged engine, and the common rail fuel injection system, which extended the flexibility of fuel injection capability, became two of the most frequently referred keywords in recent HSDI technology. In this paper some aspects of VGT potential as a full load torque and power modulator will be discussed. Possibility to utilize the portion of full load potential in favor of part load emissions and fuel economy will be investigated.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.