Refine Your Search

Topic

Author

Search Results

Technical Paper

Hyundai Full Scale Aero-acoustic Wind Tunnel

2001-03-05
2001-01-0629
A new Hyundai Aero-acoustic Wind Tunnel (HAWT) has been opened in the Nam-yang Technical Center of Hyundai Motor Company (HMC) since August 1999. This wind tunnel has a 3/4 semi-open jet test section and a closed circuit in order to improve aerodynamic and wind noise and thermodynamic characteristics of vehicles. The HMC technical center had started the feasibility study of full-scale wind tunnel in 1995, to improve the aerodynamic characteristics and to meet fuel consumption regulations. The main purpose of this facility is conduct various kinds of tests on customer driving conditions, including aerodynamic and aero-acoustic tests and engine cooling simulations, etc. The technical specification was made on the basis of HMC engineers' experience of their own model scale and full-scale wind tunnels (like MIRA or DNW) during last 10 years.
Technical Paper

Improvement on Efficiency of the Composite Sound (TTS) and It’s Application in Vehicle

1999-03-01
1999-01-0257
In the meantime, clarity and naturalness has been used as a standard for the TTS speech synthesis evaluation. However, the standard for speech synthesis evaluation should now be the human-voice and comprehension scale for the further application. This paper introduces subject on quality improvement of the composite sound explaining dB type and it’s gathering procedure, PS-RELP algorithm ending with explanation of various cases how the improved TTS can be applied in vehicle.
Technical Paper

Development of Finite Element US-SID and Euro-SID Model

2000-03-06
2000-01-0160
In contrast to the other types of crash simulation, integrated analysis is needed to perform the side impact simulation, and the acquired injury values are so sensitive that they are difficult to assess by the deformed vehicle structure itself. Therefore, the accurate FE side impact dummy (US-SID, Euro-SID) models are needed to predict the various injury values in side impact simulation. In the past, rigid body model or coarse FE model have been used. The advantage of these models is low computing power, but they have lack of predictability especially in the high-speed crash analysis such as NCAP and car-to-car simulations. The deviations are caused by inaccurate geometry and improper material characteristic expression of the side impact dummy models. In this paper, the development of new side impact dummy models and their applications at full car simulations are introduced. Also, the analyses about injury values are illustrated in side impact simulation.
Technical Paper

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-03-06
2000-01-0451
The electric power system of a modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. The electric power system of a vehicle consists of two major components: a generator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. In order to avoid the over/under design problem of the electric power system, an easy-to-use and inexpensive simulation program may be needed. In this study, a vehicle electric power simulator is developed. The simulator can be utilized to determine the optimized capacities of generators and batteries appropriately. To improve the flexibility and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC.
Technical Paper

Vehicle Controller Area Network Response Time Analysis and Measurement Issues - to Reduce the Gap between Estimation and Measurement

2017-03-28
2017-01-0018
Along with the efforts to cope with the increase of functions which require higher communication bandwidth in vehicle networks using CAN-FD and vehicle Ethernet protocols, we have to deal with the problems of both the increased busload and more stringent response time requirement issues based on the current CAN systems. The widely used CAN busload limit guideline in the early design stage of vehicle network development is primarily intended for further frame extensions. However, when we cannot avoid exceeding the current busload design limit, we need to analyze in more detail the maximum frame response times and message delays, and we need good estimation and measurement techniques. There exist two methods for estimating the response time at the design phase, a mathematical worst-case analysis that provides upper bounds, and a probability based distributed response time simulation.
Technical Paper

Evaluation of Biofidelity of the Human Body Model Morphed to Female with Abdominal Obesity in Frontal Crashes

2017-03-28
2017-01-1429
This paper aims to evaluate the biofidelity of a human body FE model with abdominal obesity in terms of submarining behavior prediction, during a frontal crash event. In our previous study, a subject-specific FE model scaled from the 50th percentile Global Human Body Model Consortium (GHBMC) human model to the average physique of three female post mortem human subjects (PMHSs) with abdominal obesity was developed and tested its biofidelity under lap belt loading conditions ([1]). In this study frontal crash sled simulations of the scaled human model have been performed, and the biofidelity of the model has been evaluated. Crash conditions were given from the previous study ([2]), and included five low-speed and three high-speed sled tests with and without anti-submarining device.
Technical Paper

Design Optimization of Alternator and Battery Systems with a Recuperation Control Algorithm for a Mid-Sized Sedan

2015-04-14
2015-01-1188
The fuel economy of a vehicle can be improved by recuperating the kinetic energy when the vehicle is decelerated. However, if there is no electrical traction component, the recuperated energy can be used only by the other electrical systems of the vehicle. Thus, the fuel economy improvement can be maximized by balancing the recuperated energy and the consumed energy. Also, suitable alternator and battery management is required to maximize the fuel economy. This paper describes a design optimization process of the alternator and battery system equipped with recuperation control algorithms for a mid-sized sedan based on the fuel economy and system cost. A vehicle model using AVL Cruise is developed for cycle simulations and validated with experimental data. The validated model is used for the parametric study and design optimization of the alternator and battery systems with single and dual energy storage.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

Steering Wheel Torque Control of Steer-by-Wire System for Steering Feel

2017-03-28
2017-01-1567
This paper proposes a reference steering wheel torque map and a torque tracking algorithm via steer-by-wire to achieve the targeted steering feel. The reference steering wheel torque map is designed using the measurement data of rack force and steering characteristic of a target performance of the vehicle at transition steering test. Since the target performance of the vehicle is only tested in nominal road condition, various road conditions such as disturbances and tire-road friction are not considered. Hence, the measurement data of the rack force that reflects the road conditions in the reference steering wheel torque map have been used. The rack force is the net force which consists of tire aligning moment, road friction force and normal force on the tire kingpin axis. A motor and a magnetorheological damper are used as actuators to generate the desired steering feel using the torque tracking algorithm.
Technical Paper

A Study on Automated Tuning of the Head Gasket Coolant Passage Hole of the Gasoline Engine Cooling System Using Optimization Technology

2019-03-25
2019-01-1411
Tuning the size and position of the cooling water holes in the head gasket during engine cooling system development is generally positioned at the final stage of the cooling system hardware design. Until now, the gasket hole tuning operation was dependent on the case study through repetitive CFD analysis. In this process, there was a difference in the optimization level by know-how and expertise of the person in charge. In this study, a gasket hole tuning technique was developed using optimization algorithms to improve the level of optimization. First, select factors and perform screening using the DOE(Design Of Experiments) method, and then find the optimal gasket hole size and arrangement through the optimal design process based on the results of the CFD analysis planned by DOE.
Technical Paper

The Analysis of Brake Squeal Noise Related to the Friction Properties of Brake Friction Materials

2019-09-15
2019-01-2132
The friction properties related to squeal noise was analyzed with the development histories and simplified computational method. Firstly, the development histories were investigated especially focusing on the case which the friction materials were modified to improve squeal noise occurrence. Based on the histories, the friction properties of selected friction materials were newly measured using dynamometer. The average friction coefficient levels, torque oscillations, the increment of friction coefficient during full-stop, and etc. were compared with the squeal noise occurrence, and the results showed that increase of friction properties cause production of squeal noise. The result suggested that the size of friction energy was important factors related to triggering the squeal noise. Also, the contact conditions between rotor disc and friction materials were significant factors deciding the noise occurrence.
Technical Paper

Engine Sound Quality Development Using Engine Vibration

2018-06-13
2018-01-1487
Automotive companies are trying to enhance the customer’s impression by improving engine sound quality. The target of this sound quality is to create a brand sound that is preferred by their customers as well as quietness of interior noise. Over the past decade there have been many studies in the field of automotive sound quality. These have included the technologies such as tuning of intake orifice and exhaust orifice, tuning of structure-borne, intake feedback devices, active exhaust valves, ANC (Active Noise Cancellation) and ASD (Active Sound Design). The three elements of the sound that affect the feeling of the customer are known as engine order arrangement, frequency balance, and linearity. Here, the most important thing in sound quality development is the order arrangement.
Technical Paper

Experimental and Numerical Study on Speaker Design of Active Pedestrian Alerting System (APAS) in Hybrid and Pure Electric Vehicles

2018-06-13
2018-01-1550
APAS refers to a low speed sound warning system of electric vehicles, which emits alerting sound only to target pedestrians by sound focusing techniques with array of speakers and object detective camera. In the present study, experimental and numerical investigations are conducted in designing speaker part and array of APAS with consideration of three main performance matrices; HEV/EV warning sound regulations in Europe and U.S., pedestrian awareness, and driver’s noise comfort. The present APAS speaker consists of back enclosure, wave guide and front grill. Each of these components plays an important role for characterizing frequency emphasis and sound directivity. The main impedance frequencies of the speaker are determined by considering warning sound regulations and also by analyzing acoustic frequency response at in/outside of a vehicle.
Technical Paper

A Study of Low-Friction Road Estimation using an Artificial Neural-Network

2018-04-03
2018-01-0811
Road friction estimation algorithms had been studied for many years because it is very important factor for safety control and fuel efficiency of vehicle. But traditional solutions are hard to adapt in automotive industry because their performance is not sufficient enough and expensive to implement. Therefore, this paper proposes a road friction estimation algorithm based on a trained artificial neural-network which is low cost and robust. The suggested method doesn’t need expensive additional sensors such as optical or lidar sensor, also it shows better performance in real car environment compared to other algorithms based on vehicle dynamics. In this paper, we would describe this algorithm in detail and analyze the test results evaluated in real road conditions.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

Improvement of Steering Performance Using Steering Rack Force Control

2019-04-02
2019-01-1234
Drivers continually require steering performance improvement, particularly in the area of feedback from the road. In this study, we develop a new electrically-assisted steering logic by 1) analyzing existing steering systems to determine key factors, 2) modeling an ideal steering system from which to obtain a desirable driver torque, 3) developing a rack force observer to faithfully represent road information and 4) building a feedback compensator to track the tuned torque. In general, the estimator uses the driver torque, assist torque and other steering system signals. However, the friction of the steering system is difficult to estimate accurately. At high speed, where steering feeling is very important, greater friction results in increased error. In order to solve this problem, we design two estimators generated from a vehicle model and a steering system model. The observer that uses two estimators can reflect various operating conditions by using the strengths of each method.
Technical Paper

A Study on the Acoustic Simulation for the Components of an Intake System

2011-05-17
2011-01-1520
The reduction of intake noise is a very important factor in controlling the interior noise levels of vehicles, particularly at low and major engine operating speeds. A vehicle intake system generally consists of air cleaner box, hose, duct, and filter element. Also, resonators and porous duct are included, being used to reduce intake noise. For more accurate estimation of the transmission loss (TL), it seems important to develop a CAE model that accurately describes this system. In this paper, simple methods, which can consider the effects of filter element and vibro-acoustic coupling, are suggested which could remarkably improve estimation accuracy of the TL. The filter element is assumed as equivalent semi-rigid porous materials characterized by the flow resistivity defined by the pressure drop, velocity, and thickness.
Technical Paper

The Simulation of ABS Stopping Distance

2011-04-12
2011-01-0570
Recently, customers have been demanding increased safety features in cars. Meanwhile, auto magazines now seek to publish the stopping distance. Further, the car development period has become shorter. For all these reasons, a precise estimation of the ABS stopping distance has grown important. A few steps that can be taken to improve accurate simulations of the ABS stopping distance are as follows: 1 Development of the tire hysteresis concept, its confirmation by test results, and then its application. 2 Free diagram development of the wheel combining ideal braking force, real braking force, and specific tire quality. 3 Modeling of HCU. 4 Application of ABS and EBD logic. 5 Application of booster characteristic to the section of early braking.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

Optimization of Cold Start Operating Conditions in a Stoichiometric GDI Engine with Wall-guided Piston using CFD Analysis

2013-10-14
2013-01-2650
The purpose of this paper is to investigate the mixture formation and optimize the operating conditions under cold start in a stoichiometric (λ=1) GDI engine with wall-guided piston using a 3D commercial code, STAR-CD [8]. For GDI engine under cold start, it can be difficult to carry out the optimization of operating conditions by engine test alone without the understanding of mixture formation inside the combustion chamber. In this study, three cold start conditions of the catalyst heating mode with split injection, the cranking under freezing temperature and acceleration before engine warm-up which causes oil dilution were calculated. In particular, injection strategy for each cold start condition were optimized and compared to the engine test data. The previously validated spray models [6] were applied to the analysis of the spray formation and mixing process inside the combustion chamber.
X