Refine Your Search

Topic

Author

Search Results

Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Hybrid Phenomenological and Mathematical-Based Modeling Approach for Diesel Emission Prediction

2020-04-14
2020-01-0660
In order to reduce the negative health effects associated with engine pollutants, environmental problems caused by combustion engine emissions and satisfy the current strict emission standards, it is essential to better understand and simulate the emission formation process. Further development of emission model, improves the accuracy of the model-based optimization approach, which is used as a decisive tool for combustion system development and engine-out emission reduction. The numerical approaches for emission simulation are closely coupled to the combustion model. Using a detailed emission model, considering the 3D mixture preparation simulation including, chemical reactions, demands high computational effort. Phenomenological combustion models, used in 1D approaches for model-based system optimization can deliver heat release rate, while using a two-zone approach can estimate the NOx emissions.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling

2007-04-16
2007-01-1127
One of the main challenges in developing cost-effective diesel particulate filters is to guarantee a thermally safe regeneration under all possible conditions on the road. Uncontrolled regenerations occur when the soot reaction rate is so high that the cooling effect of the incoming exhaust gas is insufficient to keep the temperature below the required limit for material integrity. These conditions occur when the engine switches to idle while the filter is already hot enough to initiate soot oxidation, typically following engine operation at high torque and speed or active filter regeneration. The purpose of this work is to investigate engine management techniques to reduce the reaction rate during typical failure mode regenerations. A purely experimental investigation faces many difficulties, especially regarding measurement accuracy, repeatability in filter soot loading, and repeatability in the regeneration protocol.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

Measurement of 3-D In-Cylinder Flow Fields Using Doppler Global Velocimetry

2004-03-08
2004-01-1409
In-cylinder charge motion plays a key role in optimizing the combustion process of modern reciprocating engines. The present paper describes a method for obtaining the volumetric, isothermal, in-cylinder velocity flow field using Doppler Global Velocimetry (DGV). The DGV system is designed for measuring time-averaged velocity data in three different light sheet directions using a single camera system with the aim of providing planar, spatially resolved, three-component velocity data of the cylindrical cross section. As DGV provides time-averaged data, the results can be directly compared with data obtained by 3-D CFD analysis. An automated program code generates characteristic numbers of the measured velocity fields with the aim of assessing and comparing the results of different engine concepts.
Technical Paper

Battery Simulation

2001-03-05
2001-01-0776
Battery simulation by a DSP-controlled high current power supply is used to improve repeatability and comparability of starting tests, especially at low temperatures. The simulator's algorithm calculates the internal resistance of the battery by a timely constant resistor and a variable resistor representing the actual discharge history. The output voltage of the simulator is set as a function of internal resistor and load current with temperature and state of charge as setup parameter. The simulator was evaluated in cold start testing in comparison to real batteries. As a result, batteries are simulated with high repeatability. Deviations to real battery behavior are in the range of test to test deviations using real batteries.
Technical Paper

A New Approach for a Multi-Fuel, Torque Based ECU Concept using Automatic Code Generation

2001-03-05
2001-01-0267
The software design of this new engine control unit is based on a unique and homogenous torque structure. All input signals are converted into torque equivalents and a torque coordinator determines their influence on the final torque delivered to the powertrain. The basic torque structure is independent on the type of fuel and can be used for gasoline, diesel, or CNG injection systems. This allows better use of custom specific algorithms and facilitates reusability, which is supported by the graphical design tool that creates all modules using automatic code generation. Injection specific algorithms can be linked to the software by simply setting a software switch.
Technical Paper

GALOP - IAV's Universal Speed Ratio Selection Strategy for ATs, CVTs and Hybrid Drivetrains

2002-03-04
2002-01-1256
IAV has developed a strategy for transmission ratio selection that serves AMT, ATs, CVTs and Hybrid drivetrains. Since the power demand dependent strategy is applicable to all transmission types, it is possible to implement the same character of vehicle behavior. As a result, a manufacturer specific vehicle characteristic can be given to the complete range of powertrains. This universal field of application is made possible by the choice of ratio being dependent on the drivers demand of traction power instead of the usual dependency concerning the accelerator position and the vehicle velocity. Therefore, as opposed to conventional shifting strategies, the selected transmission ratio guarantees the demanded traction power. In the case of insufficient power at the actual transmission ratio, the engine speed will be increased.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

Achieving the Max - Potential from a Variable Compression Ratio and Early Intake Valve Closure Strategy by Combination with a Long Stroke Engine Layout

2017-09-04
2017-24-0155
The combination of geometrically variable compression (VCR) and early intake valve closure (EIVC) proved to offer high potential for increasing efficiency of gasoline engines. While early intake valve closure reduces pumping losses, it is detrimental to combustion quality and residual gas tolerance due to a loss of temperature and turbulence. Large geometric compression ratio at part load compensates for the negative temperature effect of EIVC with further improving efficiency. By optimizing the stroke/bore ratio, the reduction in valve cross section at part load can result in greater charge motion and therefore in turbulence. Turbocharging means the basis to enable an increase in stroke/bore ratio, called β in the following, because the drawbacks at full load resulting from smaller valves can be only compensated by additional boosting pressure level.
Technical Paper

System Test of Light Assist Functions

2012-04-16
2012-01-1177
The increasing complexity of automotive design includes elementary aspects such as lighting. In order to validate modern light systems, new approaches must be developed. Innovative solutions are provided with an indoor lighting facility which performs tests under ideal and repeatable environmental conditions, as well as a ground-breaking approach in evaluating the static and dynamic aspects of lighting. This combination enables the simulation of traffic scenarios and the stimulation of lighting assistance systems.
Technical Paper

Cold Start Simulation and Test on DISI Engines Utilizing a Multi-Zone Vaporization Approach

2012-04-16
2012-01-0402
Recent years have witnessed a dramatic increase in global ethanol production, while cellulosic feedstock or the algae-based production approach make more sustainable ethanol production foreseeable in many countries. The ethanol produced will increasingly penetrate the markets not only as blending component, but also as main fuel component, boosting demand for flex-fuel vehicles. One of the main challenges for flex-fuel vehicles is the cold start due to the poor vapor pressure of ethanol. This is detrimental to starting capability in DISI engines in particular, with increased cylinder wall wetting causing higher oil dilution. The most efficient solution for DISI engines is a smart injection strategy, enabling fuel vaporization during injection in the compression stroke. But this requires optimum injection parameters such as injection timing, split ratio and rail pressure.
Technical Paper

A Simulation-Based Comparison of Different Power Split Configurations with Respect to the System Efficiency

2012-04-16
2012-01-0438
In power-split configuration, the input power is split into two parts, one of which is transmitted from the internal combustion engine through one or more planetary gear(s) to the wheels. The other part is generated as electricity and passes through an electrical variator to assist the driving torque. The latter has the characteristic of poor efficiency. In this simulation study, a comparison among the input power-split, compound power-split, and two mode power-split are discussed. Output power-split is not mentioned in this paper due to its limited applicability in specific vehicles. The idea of selection of the electrical machines is explained: the speed and torque of electrical machines was taken into consideration for the required transmission ratios spread.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-04-16
2012-01-1032
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles.
X