Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Prediction of CO Emissions from a Gasoline Direct Injection Engine Using CHEMKIN®

2006-10-16
2006-01-3240
Modern engines are intended to work at high efficiency and at the same time have low emissions. Since modern engines operate with nearly stoichiometric air/fuel mixtures to reduce nitrogen oxides, one of the most critical emissions is carbon monoxide and its prediction is therefore essential for today's engine design. The concept of the presented model is to combine the two-zone thermodynamic model and CHEMKIN software to predict the carbon monoxide emissions from a gasoline direct injection engine with good computational efficiency and low calculation time. The model calculation was divided into two parts. The first part is the two-zone model which can also predict the CO concentration for the exhaust condition by using the chemical equilibrium concentration. The second part is the kinetic model, which uses input data from the two-zone model and starts the calculation shortly before the end of combustion.
Technical Paper

Homogeneous Diesel Combustion with External Mixture Formation by a Cool Flame Vaporizer

2006-10-16
2006-01-3323
The homogeneous Diesel combustion is a way to effect a soot and nitrogen oxide (NOx) free Diesel engine operation. Using direct injection of Diesel fuel, the mixture typically ignites before it is fully homogenized. In this study a homogeneous mixture is prepared outside of the combustion chamber by a Cool Flame Vaporizer. At first the specification of the vaporizer is given in this paper. To determine the composition of the vaporizer gas an analysis using gas chromatography/mass spectroscopy (GC/MS) was made. The results give an idea of the effects on engine combustion. Followed by, the vaporizer was adapted to a single-cylinder Diesel engine. To adapt the engine's configuration regarding compression ratio and inlet temperature range a zero dimensional engine process simulation software was utilized. The engine was run in different operating modes.
Technical Paper

Gane Fuel - Introduction of an Innovative, Carbon-Neutral and Low Emission Fuel for HD CI Engines

2021-09-21
2021-01-1198
The newest legislative trends enforce a significant decrease in CO2 emissions for commercial vehicles. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation by 2025 and 2030. The use of carbon-neutral fuels offers possibilities regarding net-zero CO2 emissions - although not yet considered by the rules. Another challenging aspect is the drastic tightening of NOx emissions limits for future legislations, which is approved or being discussed both for the United States and for the EU. The current work describes the potentials of an innovative fuel, marketed as Gane fuel regarding performance, efficiency and emission behavior. First, the properties of the developed fuel are described: Gane is made from methanol blended with water and is tailored for diffusive combustion. The fuel blending is so defined to fulfill the combustion requirements.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Boost and EGR System for the Highly Premixed Diesel Combustion

2006-04-03
2006-01-0204
Advanced Diesel combustion strategies with the focus on the reduction of NOx and PM emission as well as fuel consumption need an increase of the EGR rate and therefore improved boost concepts. The suppression of the nitrogen oxide build up requires changes in the charge condition (charge temperature, EGR rate), which have to be realized by the gas exchange system. The gas exchange system of IAV's ADCS test engine was dimensioned with the help of the engine process simulation software THEMOS®. This paper shows simulation and test bench results of the potential to increase the EGR rate and the charge density at stationary and transient operation. The increase of both EGR rate and boost pressure, as well as the need for a better control of transient operation leads to greater requirements for the engine control system. The potential of the engine and its control system for an application to a demo vehicle will be assessed.
Technical Paper

Calibration Process for SCR Only TIER4i Engine for Construction Equipment

2012-09-24
2012-01-1954
The current legislation for industrial applications and construction equipment including earthmoving machines and crane engines allows different strategies to fulfill the corresponding exhaust emission limits. Liebherr Machines Bulle SA developed their engines to accomplish these limits using SCRonly technology. IAV supported this development, carrying out engine as well as SCR aftertreatment system and vehicle calibration work including the OBD and NOx Control System (NCS) calibration, as well as executing the homologation procedures at the IAV development center. The engines are used in various Liebherr applications certified for EU Stage IIIb, EPA TIER 4i, China GB4 and IMO MARPOL Tier II according to the regulations “97/68/EC”, “40 CFR Part 1039”, “GB17691-2005” and “40 CFR Parts 9, 85, et al.” using the same SCR hardware for all engine power variants of the corresponding I6 and V8 engine families.
Technical Paper

Machine-Learned Emission Model for Diesel Exhaust On-Board Diagnostics and Data Flow Processor as Enabler

2021-12-17
2021-01-5108
Conventional methods of physicochemical models require various experts and a high measurement demand to achieve the required model accuracy. With an additional request for faster development time for diagnostic algorithms, this method has reached the limits of economic feasibility. Machine learning algorithms are getting more popular in order to achieve a high model accuracy with an appropriate economical effort and allow to describe complex problems using statistical methods. An important point is the independence from other modelled variables and the exclusive use of sensor data and actuator settings. The concept has already been successfully proven in the field of modelling for exhaust gas aftertreatment sensors. An engine-out nitrogen oxide (NOX) emission sensor model based on polynomial regression was developed, trained, and transferred onto a conventional automotive electronic control unit (ECU) and also proves real-time capability.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

Holistic Development of Future Low NOx Emission Concepts for Heavy-Duty Applications

2018-09-10
2018-01-1700
Further tightening of NOx emission standards as well as CO2 emission limits for commercial vehicles are currently under discussion. In the on-road market, lowering NOx emissions up to 90%, down to 0.02 g/bhp-hr, has been proposed by CARB and is evaluated by US EPA. Testing for in-service conformity using a portable emission measurement system (PEMS) is currently under review in the US. In Europe, CO2 emission limits are anticipated and a CO2 monitoring program is ongoing. PEMS legislation has been recently tightened and further restrictions can be expected. Stage V legislation has been introduced in Europe and it is foreseeable that further tightening of off-road standards will take place in the future. This study deals with virtual development and evaluation of future engine and exhaust aftertreatment (EAT) technology solutions to fulfill the diverse future emission requirements with emphasis on off-road applications.
Technical Paper

Charge Motion and Mixture Formation Analysis of a DISI Engine Based on an Adaptive Parallel Mesh Approach

2014-04-01
2014-01-1136
Mesh generation is frequently one of the most labor-intensive aspects of in-cylinder engine simulation with computational fluid dynamics (CFD). This expense makes parameter studies, such like engine geometry, valve timing or injection timing, a particularly challenging endeavor. The present paper introduces a CFD approach for the simulation of the in-cylinder processes of an internal combustion engine that minimizes user-required meshing effort and can handle almost unlimited boundary motion. The adaptation is fully automated and avoids the use of target meshes and global solution remapping. The intention of the approach is to use CFD for numerous parameter variations involving combustion system variabilities. Therefore, an open source base is chosen to avoid limitations of individual simulations due to a finite number of commercial licenses. The approach is used here for the simulation of a modern direct injection spark igniton (DISI) engine.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

2019-04-02
2019-01-0984
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
X