Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Investigation on the Potential of Quantitatively Predicting CCV in DI-SI Engines by Using a One-Dimensional CFD Physical Modeling Approach: Focus on Charge Dilution and In-Cylinder Aerodynamics Intensity

2015-09-06
2015-24-2401
Increasingly restrictive emission standards and CO2 targets drive the need for innovative engine architectures that satisfy the design constraints in terms of performance, emissions and drivability. Downsizing is one major trend for Spark-Ignition (SI) engines. For downsized SI engines, the increased boost levels and compression ratios may lead to a higher propensity of abnormal combustions. Thus increased levels of Exhaust Gas Recirculation (EGR) are used in order to limit the appearance of knock and super-knock. The drawback of high EGR rates is the increased tendency for Cycle-to-Cycle Variations (CCV) it engenders. A possible way to reduce CCV could be the generation of an increased in-cylinder turbulence to accelerate the combustion process. To manage all these aspects, 1D simulators are increasingly used. Accordingly, adapted modeling approaches must be developed to deal with all the relevant physics impacting combustion and pollutant emissions formation.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

A Semi-Physical NOx Model for Diesel Engine Control

2013-04-08
2013-01-0356
In this paper, a new physics-based model for the prediction of NOx emissions produced by diesel engines is presented. The aim of this work is to provide a reference model for the validation of control strategies and NOx estimators. The model describes the NOx production in the burned gas zone where the burned gas temperature sub-model is adapted to be generic and tunable. The model consists of three main sub-models for the estimation of the burned gas temperature, the concentration of the species in the burned gases and the NOx formation, respectively. A new model for estimating the burned gas temperature, known to have a strong impact on thermal NOx formation rate, is proposed. The model depends on the intake burned gas ratio and the combustion phasing computed from the cylinder pressure. This model has a limited number of calibration parameters identified so that NOx model output matches with experimental data measured in a four-cylinder, four-stroke, direct-injection diesel engine.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
X