Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Flow and Spray Investigation in Direct Injection Gasoline Engines

An investigation into the spray structure generated by two swirl pressure atomisers under various operating conditions in a constant-volume chamber and the in-cylinder flow pattern in an optical research direct-injection gasoline engine has been performed using CCD camera and laser Doppler velocimetry, respectively. The results provided detailed information about the effect of back pressure on the spray structure generated by the two injectors and the in-cylinder flow field which the sprays encounter following fuel injection into the cylinder during the induction and compression strokes.
Technical Paper

Spray and Combustion Development in a Four-Valve Optical DI Diesel Engine

An optical single-cylinder four-valve high speed DI Diesel engine equipped with a high-pressure electronic fuel injection system has been used to obtain information about the spray development, combustion and exhaust emissions (NOx and smoke levels) for a range of operating conditions corresponding to engine speeds between 600 and 1800 rpm, injection pressures up to 1200 bars and fuel injection quantities from idle to full load. Two six-hole vertical mini-sac type injection nozzles with different hole sizes have been employed in order to investigate the effect of nozzle hole diameter on spray formation, combustion and exhaust emissions. Parallel to the experimental programme, a computational investigation of the fuel flow distribution inside the injection system and of the subsequent spray characteristics has been performed in order to assist in the interpretation of the results.
Technical Paper

Modeling of Advanced High-Pressure Fuel Injection Systems for Passenger Car Diesel Engines

A one-dimensional, transient and compressible flow model was used in order to simulate the flow and pressure distribution in advanced high-pressure fuel injection systems; these include electronic distributor-type pumps with either axial or radial plungers and a common-rail system. Experimental data for the line pressure, needle lift, injection rate and total fuel injection quantity obtained over a wide range of operating conditions (from idle to high speed/full load) were used to validate the model. The FIE system used for validation comprised an electronic high-pressure pump connected to two-stage injectors of different type including 6-hole vertical and 5-hole inclined conical-sac and VCO nozzles.
Technical Paper

Air and Fuel Characteristics in the Intake Port of a SI Engine

The interaction of fuel sprays and airflow in the intake system of a port fuel-injected spark-ignition engine has been examined experimentally in a pulsating-flow rig which comprised the cylinder head and intake manifold of a production engine connected to a large-capacity plenum chamber, with the camshaft of the intake valves driven by an electrical motor at engine speeds between 1000 and 5000 rpm and with air sucked through the system by a suction fan. Static pressure measurements in the intake port showed periodic pulsations with frequencies of 360 and 200 Hz with open and closed valves, respectively, and these corresponded to quarter- and half-waves in the manifold and were independent of engine speed.
Technical Paper

Transient Characteristics of Single-Hole Diesel Sprays

Diesel fuel was injected through a pintle nozzle into quiescent ambient air and the transient characteristics of the spray were examined as a function of injection pump speed. The laser-based techniques characterised the spray in terms of its transient structure, tip penetration, droplet axial mean and rms velocities and average droplet size. The results, when correlated with the fuel line pressure and nozzle exit conditions, revealed the presence of four regimes in the transient spray development: an early injection period representing the first stage of droplet formation, the main injection period associated with the formation and break up of a dense core and representing the second stage of droplet formation, a late injection period corresponding to the collapse of the dense core and a post injection period where, depending on the injection conditions, liquid ligaments and/or large droplets are present near the nozzle and may give rise to a third stage of droplet formation.
Technical Paper

Prediction of the Flow and Spray Processes in an Automobile DI Diesel Engine

In this study three-dimensional CFD calculations of the gas motion and spray characteristics of a small (1.9l), high-speed direct-injection Diesel engine are presented and evaluated. The calculations were performed using the SPEED code, developed within the European IDEA-EFFECT project: it uses fully implicit finite volume methodology in conjunction with an unstructured mesh to represent the full complexities of the engine geometry and solve the equations governing the gas motion, fuel spray evolution and subsequent fuel/air mixing. Submodels for particular aspects of these processes developed by various partners in the project are incorporated. The accuracy of the predictions is assessed through comparisons with detailed LDA measurements of the velocity field during the induction and compression strokes up to the time of ignition, as well as with quantitative measurements of the spray penetration and local droplet velocities. Moderately good agreement is obtained.
Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine

Direct flame imaging and pressure analysis were applied to the combustion of gasoline and compressed natural gas (CNG) in a single-cylinder, four-valve spark-ignition engine equipped with optical access via quartz windows in the cylinder liner and piston crown. Tests were performed at three engine speed/load conditions and at equivalence ratios of 1.0, 0.9 and 0.8. The four-valve head incorporated two different port geometries, with and without metal sleeves to deflect the intake air flow, in order to investigate the effect of tumble strength on combustion and engine-out emissions of unburned hydrocarbons and NOx. The results showed that sleeving of the intake ports produced a significant increase in IMEP and a reduction in CoV IMEP for both CNG and gasoline, due to the greatly reduced bum duration.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.