Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Fuel Property Effects on Emissions and Performance of a Light-Duty Diesel Engine

2009-04-20
2009-01-0488
Increased demand for highly fuel efficient propulsion systems drives the engine development community to develop advanced technologies allowing improving the overall thermal efficiency while maintaining low emission levels. In addition to improving the thermal efficiencies of the internal combustion engine itself the developments of fuels that allow improved combustion as well as lower the emissions footprint has intensified recently. This paper will describe the effects of five different fuel types with significantly differing fuel properties on a state-of-the-art light-duty HSDI diesel engine. The fuels cetane number ranges between 26 and 76. These fuels feature significantly differing boiling characteristics as well as heating values. The fuel selection also contains one pure biodiesel (SME - Soy Methyl Ester). This study was conducted in part load and full load operating points using a state of the art HSDI diesel engine.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

Impact of Fuel Properties on Advanced Combustion Performance in a Diesel Bench Engine and Demonstrator Vehicle

2010-04-12
2010-01-0334
Six diesel, kerosene, gasoline-like, and naphtha fuels have been tested in a single cylinder diesel engine and a demonstrator vehicle, both equipped with similar engine technology and optimized for advanced combustion performance. This study was completed in order to investigate the potential to reduce engine-out emissions while maintaining engine efficiency and noise levels through changes in both engine hardware and fuel properties. The fuels investigated in this study were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions and performance. The optimized bench engine used in this study included engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under advanced combustion conditions, at least under some speed and load conditions.
Technical Paper

The Impact of Different Biofuel Components in Diesel Blends on Engine Efficiency and Emission Performance

2010-10-25
2010-01-2119
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
Technical Paper

New CNG Concepts for Passenger Cars: High Torque Engines with Superior Fuel Consumption

2003-06-23
2003-01-2264
Since the CO2 emissions of passenger car traffic and their greenhouse potential are in the public interest, natural gas (CNG) is discussed as an attractive alternative fuel. The engine concepts that have been applied to date are mainly based upon common gasoline engine technology. In addition, in mono-fuel applications, it is made use of an increased compression ratio -thanks to the RON (Research Octane Number) potential of CNG-, which allows for thermodynamic benefits. This paper presents advanced engine concepts that make further use of the potentials linked to CNG. Above all, the improved knock tolerance, which can be particularly utilized in turbocharged engine concepts. For bi-fuel (CNG/gasoline) power trains, the realization of variable compression ratio is of special interest. Moreover, lean burn technology is a perfect match for CNG engines. Fuel economy and emission level are evaluated basing on test bench and vehicle investigations.
Technical Paper

Integrated Air Supply and Humidification Concepts for Fuel Cell Systems

2001-03-05
2001-01-0233
In this paper different air management system concepts including mechanical superchargers and turbochargers are analysed with regard to their suitability for fuel cell applications. Therefore a simulation model which takes the main mass, energy and heat flows in the fuel cell system including fuel evaporation, reformer, gas cleaning, humidification, burner and compressor/expander unit into account was setup. For a PEM system with methanol steam reformer the best system efficiencies at rated power can be achieved with a turbocharger in combination with a tailgas burner for operating pressures between 2.5 and 2.8 bar. For pure hydrogen systems the best system efficiency is obtained with an electric driven supercharger for a maximum pressure of 2 bar and an appropriate pressure strategy during part load operation in the complete operating range. The increase of system efficiency for pressurized stack operation is mainly attributed to advantages with regard to water management.
Technical Paper

Future Power Plants For Cars

2001-10-01
2001-01-3192
Environmental concern demands that emissions and fuel consumption of vehicles have to improve considerably in the next 10 years. New technologies for gasoline engines, downsizing with high boosting, direct injection and fully variable valve train systems, are being developed. For Diesel engines, improved components including piezobased injectors and particle filters are expected. In the drive train new starter-generator systems as well as automated manual transmissions are being developed. In parallel alternative fuels are investigated and the use of hybrid drives and fuel cells are developed. This paper reports the progress made in the recent years and gives a comparative assessment on the different technologies with a prediction of the introduction dates and volumes into the market.
Technical Paper

Fuel Consumption and Exhaust Emissions of Diesel, Gasoline and Natural Gas Fuelled Vehicles

2001-11-01
2001-28-0068
With regard to increasingly stringent emission legislation natural gas is gaining interest as an alternate fuel. Concerning mobile application natural gas is often considered to produce potentially lower exhaust emissions compared to diesel and gasoline fuel. Nevertheless, also the exhaust gas of diesel and gasoline fuelled vehicles will be improved by applying advanced technical solutions. The paper reveals the state-of-the-art in exhaust emission behaviour of diesel, gasoline, liquified petroleum gas and natural gas fuelled vehicles. Passenger cars and light-duty trucks will be considered as well as HD-trucks. Emissions include NOx, THC, NMHC, CO, Aldehydes and PAH. In addition CH4 and CO2 emissions are discussed with respect to increasing concern about the greenhouse effect. From the viewpoint of the HD-engines the alternate fuels Dimethylether (DME) and Diesel/water-Emulsion are also considered.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Fuel Efficient Natural Gas Engine with Common-Rail Micro-Pilot Injection

2000-08-21
2000-01-3080
In the recent years, it has become obvious that one of the main fields of interest in alternate fuels is the public transportation sector. Natural Gas seems to be advantageous. It is available and environmentally friendly, even if the greenhouse effect of methane is considered. The operation range of vehicles running on CNG (Compressed Natural Gas) is poor due to the large pressure vessels, but in case of urban buses with low daily mileage this is acceptable. On the other hand, the use of an environmentally friendly fuel is favorable especially in urban areas. Although there are some advantages of Natural Gas, diesel buses dominate the market. The reason is the better part-load fuel efficiency of the Diesel principle which is superior to the Otto-cycle due to the absence of engine throttling. The efficiency levels of Spark-Ignition (SI) -type, Lean Burn Natural Gas engines are quite comparable to diesel engines during full load conditions.
Technical Paper

Low Emission and Fuel Consumption Natural Gas Engines with High Power Density for Stationary and Heavy-Duty Application

1999-08-17
1999-01-2896
Today, natural gas engines for stationary and vehicular applications are not only faced with stringent emission legislation, but also with increasing requirements for power density and efficient fuel consumption. For vehicular use, downsizing is an advantageous approach to lowering on-road fuel consumption and making gas engines more competitive with their diesel counterparts. In SI-engines, the power density at a given compression ratio is limited by knocking, or NOx emissions. A decrease in compression ratio, lowering both NOx emissions and the risk of knocking combustion, increases fuel consumption. An increase in air-fuel-ratio, required to avoid knocking at higher thermal loading, increases boost pressure, HC and CO emissions, and mechanical loading and causes the danger of misfiring. As a result, the performance of the latest production gas engines for vehicles remains at a BMEP of 18…20 bar with a NOx emission level of 2…5 g/kWh.
Technical Paper

Future of Combustion Engines

2006-10-16
2006-21-0024
Increasing shortages of energy resources as well as emission legislation is increasing the pressure to develop more efficient, environmentally friendly propulsion systems for vehicles. Due to its more than 125 years of history with permanent improvements, the internal combustion engine (ICE) has reached a very high development status in terms of efficiency and emissions, but also drivability, handling and comfort. Therefore, the IC engine will be the dominant propulsion system for future generations. This paper gives a survey on the present technical status and future prospects of internal combustion engines, both CI and SI engines, also including alternative fuels. In addition a brief overview of the potential of currently intensely discussed hybrid concepts is given.
X