Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Expansion of Premixed Compression Ignition Combustion Region by Supercharging Operation and Lower Compression Ratio Piston

Various premixed diesel combustion concepts are suggested as the way of simultaneous reduction of NOx and PM emission from diesel engines. However, every combustion concept has common problems, such as difficulty of ignition timing control, a great deal of HC and CO emissions and limiting the operation region to low load operation. The purpose of this study is to expand the operation region of Premixed Compression Ignition (PCI) combustion, which is a premixed diesel combustion concept that realizes the fuel injection around the top dead center. As a result of examining it with EGR, supercharging operation and low compression ratio piston, PCI combustion region was expanded to cover higher load operation. And the high load region was limited by not only stoichiometric air fuel ratio but also permissible maximum in-cylinder pressure.
Technical Paper

Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center

Premixed diesel combustion was performed and various characteristics examined with fuel injection timing near top dead center (TDC). A lean and uniform fuel-air mixture was found to during 25° C.A. with a narrow injection angle (27.5° with respect to horizontal), shallow dish combustion chamber, and low cetane number fuel (CN=19). These conditions enabled low NOx combustion in no exhaust gas re-circulation (EGR), despite fuel injection timing around 25° BTDC. Furthermore, HC emissions were lower than with premixed diesel combustion of the early injection type. Because fuel injection timing was near TDC, the volume of the mixture dispersed to a squish area was decreased. This combustion mode was also achieved with a high-cetane fuel (conventional diesel fuel) and high EGR rate conditions. However, in this case, it was difficult to adjust the ignition timing near top dead center. This combustion system also showed good performance in conventional diesel combustion mode.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

An Analysis of the Combustion of a DI Diesel Engine by Photograph Processing

To analyze the combustion phenomena of DI diesel engines in detail, the “cross-correlation method” and the “two-color method” have been applied to measure the combustion flame motion and the flame temperature, respectively by processing the high speed photographs. The purpose of this investigation is to study the effects of engine parameters such as pumping rate, injector nozzle hole size, and injection timing on combustion processes; particularly on flame motion and flame temperature. The results showed that the flame motion was more active during the injection period; and after the end of injection, the motion of flame was largely governed by the air swirl. Increasing fuel pumping rate and using a small hole area injector nozzle, caused the flame motion to become more active, especially during the injection period. The flame temperature was higher with both increased pumping rate and advanced injection timing.
Technical Paper

Characteristics of Air-entrainment in a Diesel Spray

The behavior of air-entrainment in a Diesel fuel spray was studied by analyzing the air movement around a free non-evaporated Diesel fuel spray in a pressurized vessel. To measure the air movement around the spray. The density difference in the air near the surface of spray was measured as a tracer of the moving air. This was accomplished heating a stainless steel (SUS) wire with large current. The movement of air caused by the air-entrainment into the spray was recorded by a high speed camera system. By analyzing the recorded air movement, the air-entrainment was obtained. The effects of nozzle hole diameter, injection velocity and ambient gas density on the air-entrainment behavior were investigated. Some discussions were added to help considering the complex phenomena of air-entrainment into a Diesel spray, based on comparing the averaged air/fuel ratio inside the spray with both values of measurement and predicted by momentum theory.
Technical Paper

An Observation and Analysis of the Combustion Under Supercharging on a DI Diesel Engine

Supercharging as the method of increasing the output of diesel engines has a long history. Recently, because the potential for lower exhaust emissions for a given power output, supercharging has been considered as a method to reach increasingly strict emissions standards. Some research investigating the effects of supercharging has shown favorable results in terms of emissions(e.g.[1][2][3] *). Also some fundamental studies have examined the effect of ambient pressures on the characteristics of spray and ignition in constant volume combustion borb[4][5][6][7]. However, for further improvement of combustion when utilizing supercharging, more detailed information inside of the combustion chamber is needed about the effects of supercharging on fuel spray and combustion. In order to gather this information, it is necessary to observe the processes within the combustion chamber of a supercharged engine.
Technical Paper

A Study of Diesel Combustion Process Under the Condition of EGR and High-Pressure Fuel Injection with Gas Sampling Method

It is well known that a high-pressure fuel injection is effective for the reduction in particulates and smoke emissions. Exhaust gas recirculation (EGR) is effective for the reduction in NOX emission. In this study an experiment aiming to understand more comprehensive combustion under the condition of EGR and high-pressure fuel injection was carried out by using gas sampling method for the purpose of understanding what occurred inside the spray before and after combustion. The number of combustion cycles in this engine can be controlled in order to change EGR conditions by adjusting the residual gas concentration in the cylinder. Main results were: (1) Close to the nozzle tip, the sampling gas data showed little reaction which implies that combustion never occurs in this area during the injection period. (2) In the case of high-pressure fuel injection O2 concentration decreased faster and air dilution was more active and earlier.
Technical Paper

Effects of Fuel Injection Rate on Combustion and Emission in a DI Diesel Engine

Fuel injection rate pattern represents an important factor for emissions reduction. In this study, fuel spray photography, combustion photography and experimental data analysis indicate. 1) effect of pilot injection 2) effect of a gradual shaped injection profile using nozzle needle lift control 3) effect of a boot shaped injection profile using pressure control Common rail type fuel injection equipment was used in these experiments, and the engine was single cylinder naturally aspirated D.I. diesel engine. As a result, we found out that it is important to control the pre-mixed combustion for NOx reduction and to activate the diffusion combustion for smoke, and various fuel injection rate patterns we studied have similar effect on combustion and emissions at the most suitable condition respectively.
Technical Paper

Numerical Calculation of Spray Mixing Process in a D.I. Diesel Engine and Comparison with Experiments

Three dimensional computational model has been developed to predict the macroscopic behavior of the fuel spray in D. I. diesel engines. The model was based on the KIVA-II code with modification of some submodels that it can deal with the observed phenomena such as liquid column near the nozzle tip and spray impingement on a wall. Firstly, this model was verified by comparing the prediction with the experimental results in a constant volume vessel. Secondly with application to a D.I. diesel engine, the detailed behavior of the spray in a combustion chamber was revealed. Moreover, the engine performance under different spray angles were discussed with the prediction of this model.