Refine Your Search

Topic

Search Results

Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

2010-04-12
2010-01-1011
This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Journal Article

A Computational Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in the Design Process

2013-05-13
2013-01-1933
For most car manufacturers, wind noise from the greenhouse region has become the dominant high frequency noise contributor at highway speeds. Addressing this wind noise issue using experimental procedures involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process. Previously, a computational approach that couples an unsteady computational fluid dynamics solver (based on a Lattice Boltzmann method) to a Statistical Energy Analysis (SEA) solver had been validated for predicting the noise contribution from the side mirrors. This paper presents the use of this computational approach to predict the vehicle interior noise from the windshield wipers, so that different wiper placement options can be evaluated early in the design process before the surface is frozen.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Technical Paper

In the Wake of Others: Unsteady Bonnet Surface Pressure Predictions and Measurements

2020-04-14
2020-01-0676
In use cars often drive through the wakes of other vehicles. It has long been appreciated that this imposes a fluctuating onset flow which can excite a structural response in vehicle panels, particularly the bonnet. This structure must be designed to be robust to such excitation to guarantee structural integrity and maintain customer expectations of quality. As we move towards autonomous vehicles and exploit platoons for drag reduction, this onset flow condition merits further attention. The work reported here comprises both measurements and simulation capturing the unsteady pressure distribution over the bonnet of an SUV following a similar vehicle at high speed and in relatively close proximity. Measurements were taken during track testing and include 48 static measurement locations distributed over the bonnet where the unsteady static pressures were recorded.
Technical Paper

SEA Modeling of Vehicle Wind Noise and Load Case Representation

2007-05-15
2007-01-2304
Vehicle wind noise is becoming increasingly important to customer satisfaction. Early wind noise assessment is critical to get things right during the early design phase. In this paper, SEA modeling technique is used to predict vehicle interior noise caused by the exterior turbulence. Measured surface turbulence pressures over vehicle greenhouse panels are applied as wind noise load. SEA representation of wind noise load case is investigated. It has been found that current SEA wind noise load case over-estimates at frequencies below window glass coincident frequency. A new concept of noise source pole index is introduced and a new wind noise load coupling has been developed. Comparison with vehicle wind tunnel measurements shows that the proposed load case significantly improved prediction accuracy.
Technical Paper

Recent Advances in Powertrain Sound Quality Hardware Tuning Devices and Perspectives on Future Advances

2009-05-19
2009-01-2192
Over the past decade there have been significant advances made in the technology used to engineer Powertrain Sound Quality into automobiles. These have included exhaust system technologies incorporating active and semi-active valves, intake system technologies involving passive and direct feedback devices, and technologies aimed at tuning the structure-borne content of vehicle interior sound. All of these technologies have been deployed to complement the traditional control of NVH issues through the enhancement of Powertrain Sound Quality. The aim of this paper is to provide an historical review of the recent industry-wide advances made in these technologies and to provide the author's perspective on what issues have been addressed and what opportunities have been delivered.
Technical Paper

Effect of Setting Velocity on Self-Piercing Riveting Process and Joint Behaviour for Automotive Applications

2010-04-12
2010-01-0966
The increased application of lightweight materials, such as aluminium has initiated many investigations into new joining techniques for aluminium alloys. As a result, Self-piercing riveting (SPR) was introduced into the automotive industry as the major production process to join aluminium sheet body structures. Although both hydraulic and servo types of SPR equipment are used by the industry, the servo type is most commonly used in a volume production environment. This type uses stored rotational inertia to set the rivet. The initial rotational velocity of the mass dictates the setting force and hence the tool is described as velocity-controlled. A study was therefore conducted to examine the effect of setting velocity on the process including tooling and joint performance. It was found that the setting velocity would have a significant effect on tooling life. Over 80kN force could be introduced into the tooling depending on selection of the setting velocity.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Experimental and Computational Study of Vehicle Surface Contamination on a Generic Bluff Body

2016-04-05
2016-01-1604
This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle.
Technical Paper

Measurement of Exterior Surface Pressures and Interior Cabin Noise in Response to Vehicle Form Changes

2011-05-17
2011-01-1618
Automotive manufactures demand early assessment of vehicle form design against wind noise attribute to eliminate any engineering waste induced by late design changes. To achieve such an assessment, it is necessary to determine a measurable quantity which is able to represent vehicle form changes, and to understand the relationship between the quantity and vehicle interior cabin noise. This paper reports experimental measurements of vehicle exterior surface pressure and the interior cabin noise level in response to the change of exterior rear view mirror shape. Measurements show that exterior surface pressure on vehicle greenhouse panel is a primary factor of wind noise load to the interior cabin noise; they can be used in preliminary wind noise ranking. Care should be taken when using them in ranking vehicle form wind noise performance. It has been observed that a change in surface pressure on the front side window does not necessarily lead to a change in the interior cabin noise.
Technical Paper

SEA Wind Noise Load Case for Ranking Vehicle Form Changes

2011-05-17
2011-01-1707
Vehicle manufacturers demand early design assessment of vehicle wind noise attribute so as to eliminate engineering waste induced by late design changes. Vehicle wind noise attribute can be simulated with a Statistical Energy Analysis (SEA) model using exterior surface turbulence pressure on the vehicle greenhouse panel as the wind noise load. One important application of SEA wind noise model is the wind noise assessment for vehicle form design. Vehicle form optimization for wind noise plays an important role in lightweight vehicle architecture, since that reduction in the wind noise load will compensate the loss of vehicle body acoustic attenuation caused by down-gauge glazing and body panels. In this paper, two SEA wind noise load cases currently used in vehicle SEA wind noise modeling have been analyzed and evaluated against vehicle measurements.
Technical Paper

A Pragmatic Model-Based Product Engineering Process

2014-04-01
2014-01-0308
Complexity of electronics and embedded software systems in automobiles has been increasing over the years. This necessitates the need for an effective and exhaustive development and validation process in order to deliver fault free vehicles at reduced time to market. Model-based Product Engineering (MBPE) is a new process for development and validation of embedded control software. The process is generic and defines the engineering activities to plan and assess the progress and quality of the software developed for automotive applications. The MBPE process is comprised of six levels (one design level and five verification and validation levels) ranging from the vehicle requirements phase to the start of production. The process describes the work products to be delivered during the course of product development and also aligns the delivery plan to overall vehicle development milestones.
Technical Paper

CFD Simulation of Side Glass Surface Noise Spectra for a Bluff SUV

2006-04-03
2006-01-0137
Simulation of local flow structures in the A-pillar/side glass region of bluff SUV geometries, typical of Land Rover vehicles, presents a considerable challenge. Features such as relatively tight A-pillar radii and upright windscreens produce flows that are difficult to simulate. However, the usefulness of aerodynamics simulations in the early assessment of wind noise depends particularly on the local accuracy obtained in this region. This paper extends work previously published by the author(1) with additional data and analysis. An extended review of the relevant published literature is also provided. Then the degree to which a commercial Lattice-Boltzman solver (Exa PowerFLOW™) is currently able to capture both the local flow structure and surface pressure distribution (both time averaged and unsteady) is evaluated. Influential factors in the simulation are shown to be spatial resolution, turbulence and boundary layer modelling.
Technical Paper

Beamforming Quantification of Acoustic Transmission Paths for Passenger Vehicles Using a Reciprocal Approach

2023-05-08
2023-01-1090
This paper presents an experimental method for measuring transmission paths from the exterior to the interior of a passenger vehicle using a reciprocal approach: A production vehicle was placed in a semi-anechoic environment; artificial noise sources were placed at the location of the occupant’s ear(s) inside the vehicle and beamforming arrays with a total of more than 300 microphones were used to observe apparent noise sources on the vehicle exterior resulting from transmission paths. This makes it possible to quickly measure transmission paths over the whole vehicle body. One of the motivations for this work is the monitoring of sealing quality on production vehicles. Artificial seal breaches were introduced on the vehicle and a number of excitation signals were assessed to develop a method to detect and localise leakage noise sources.
Technical Paper

Active Grille Shutters Control and Benefits in Medium to Large SUV: A System Engineering Approach

2020-04-14
2020-01-0945
Whilst the primary function of the active grille shutters is to reduce the aerodynamic drag of the car, there are some secondary benefits like improving the warm up time of engine and also retaining engine heat when parked. In turbocharged IC engines the air is compressed (heated) in the turbo and then cooled by a low temperature cooling system before going into the engine. When the air intake temperature exceeds a threshold value, the engine efficiency falls - this drives the need for the cooling airflow across the radiator in normal operation. Airflow is also required to manage the convective heat transfer across various components in the engine bay for its lifetime thermal durability. Grill shutters can also influence the aerodynamic lift balance thus impacting the vehicle dynamics at high speed. The vehicle HVAC system also relies on the condenser in the front heat exchanger pack disposing the waste heat off in the most efficient way.
Technical Paper

Numerical Investigation of Wiper Drawback

2019-04-02
2019-01-0640
Windscreen wipers are an integral component of the windscreen cleaning systems of most vehicles, trains, cars, trucks, boats and some planes. Wipers are used to clear rain, snow, and dirt from the windscreen pushing the water from the wiped surface. Under certain conditions however, water which has been driven to the edge of the windscreen by the wiper can be drawn back into the driver’s field of view by aerodynamic forces introduced by the wiper motion. This is wiper drawback, an undesirable phenomenon as the water which is drawn back on to the windscreen can reduce driver’s vision and makes the wiper less effective. The phenomena of wiper drawback can be tested for in climatic tunnels using sprayer systems to wet the windscreen. However, these tests require a bespoke test property or prototype vehicle, which means that the tests are done fairly late in the development of the vehicle.
Journal Article

Investigation of Wave Stripping Models on a Generic Wing-Mirror Using a Coupled Level-Set Volume of Fluid Simulation

2020-04-14
2020-01-0682
Predicting Exterior Water Management is important for developing vehicles that meet customer expectations in adverse weather. Fluid film methods, with Lagrangian tracking, can provide spray and surface water simulations for complex vehicle geometries in on-road conditions. To cope with this complexity and provide practical engineering simulations, such methods rely on empirical sub-models to predict phenomena such as the film stripping from the surface. Experimental data to develop and validate such models is difficult to obtain therefore here a high-fidelity Coupled Level-set Volume of Fluid (CLSVOF) simulation is carried out. CLSVOF resolves the interface of the liquid in three dimensions; allowing direct simulation of film behaviour and interaction with the surrounding air. This is used to simulate a simplified wing-mirror, with air flow, on which water is introduced.
Technical Paper

Visualisation of Roof Bar Noise Sources through the Use of Acoustic Beamforming and Computational Aeroacoustics

2023-04-11
2023-01-0840
The reduction in wind noise is increasingly important to vehicle designers as overall vehicle refinement increases. Customers often fit accessories such as roof bars to vehicles, with the aerodynamic interaction of these components generating aeroacoustic noise sources. These are often tonal in nature and of particular annoyance to occupants. Sensors for automated driving fitted to future vehicles may also have a similar detrimental effect on vehicle refinement. Therefore, careful design of such components is important to minimise dissatisfaction. This paper presents the combined application of acoustic beamforming in a full-scale aeroacoustic wind tunnel and the use of a Lattice Boltzmann Method CFD code to characterise the aeroacoustic performance of a roof bar design when fitted to a production vehicle.
X