Refine Your Search

Topic

Author

Search Results

Journal Article

Mixing-Controlled, Low Temperature Diesel Combustion with Pressure Modulated Multiple-Injection for HSDI Diesel Engine

2010-04-12
2010-01-0609
This paper proposes a new mixing-controlled, low temperature combustion (LTC) approach for high-speed direct injection (HSDI) diesel engines. The purpose of this approach is to avoid the excessively high pressure-rise rate (PRR) of premixed, kinetics-controlled LTC and to enable the low nitrogen oxides (NOx) combustion to operate over the wide speed and load range of the engine. To address the soot/noise trade-off at high load LTC operating conditions, the pressure modulated multiple-injection coupled with swirl control was applied. This injection strategy enables the injection of high pressure (HP) main spray into the local high temperature region of the already burning low pressure (LP) pilot spray injected from the neighboring injection hole. By employing this injection strategy, the equivalence ratio (φ) distribution of mixture is drastically varied during main combustion processes.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Technical Paper

Evaluation of Regulated Materials and Ultra Fine Particle Emission from Trial Production of Heavy-Duty CNG Engine

2006-10-16
2006-01-3397
A prototype CNG engine for heavy-duty trucks has been developed. The engine had sufficient output in practical use, and the green-house gas emission rate was below that of the base diesel engine. Furthermore, the NOx emission rate was reduced to 0.16 g/kWh in the JE05 mode as results of having fully adjusted air fuel ratio control. The measured emission characteristics of particles from the prototype CNG engine demonstrated that oil consumption was related to the number of particles. Moreover, when oil consumption is at an appropriate level, the accumulation mode particles are significantly reduced, and the nuclei mode particles are fewer than those of diesel-fueled engines.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Feasibility Study of Urea SCR Systems on Heavy Duty Commercial Vehicles

2004-06-08
2004-01-1944
Four urea SCR systems were developed and evaluated on a C/D and on the road to investigate their potential for Japanese emission regulations in 2005 and beyond. Test results showed that NOx conversion ratios were 50 to 70% during the Japanese D13 mode cycle, and the ratios under the transient driving cycle were lower than those tested during a steady state. Unregulated emissions, such as benzene, aldehyde and benzo[a]pyrene, existed either at a trace level using the oxidation catalyst, or lower than a base diesel engine, when no oxidation catalyst was used. The health effects of particulate matter emitted from the SCR system were almost the same as those from conventional diesel engines, as evaluated by the Ames test and in vitro micronucleus test. Thermal degradation products, such as cyanuric acid and melamine, were two to four figures lower compared with the toxicological information of Safety Information Resources Inc. (SIRI).
Technical Paper

Research on bus passenger safety in frontal impacts

2001-06-04
2001-06-0210
Guidelines with regard to the body strength of buses have been drawn up in Japan. We now pass to the second step in research to assure the greater safety of bus crews and passengers by launching a study on further reduction of collision injuries to bus occupants. As a way to reduce such passenger injuries, our focus is the optimization of energy absorption, the arrangement of equipment on the passenger seat back, the seat frame construction, mounting and so on. The study was conducted using an experimental method together with FEM computer simulation. The findings from a sled impact test simulating a seat in a bus in a frontal collision are stated as follows. 1.Further consideration should be given to the present conventional ELR two-point seat belt. 2.One way to reduce passenger injury is to optimize the space between seats.
Technical Paper

Combustion Improvement of a Premixed Charge Compression Ignition Methanol Engine using Flash Boiling Fuel Injection

2001-09-24
2001-01-3611
A premixed charge compression ignition methanol engine targeting a drastic decrease in NOx emissions and a brake specific energy consumption equivalent to that of a DI diesel engine has been developed (1). The problems of this combustion system are that the brake thermal efficiency decreases, and CO and THC emissions increase due to a deterioration of high load combustion. The purpose of this study is to improve the high load combustion of a premixed charge compression ignition methanol engine using a flash boiling fuel injection technique. The results of this study have shown that the premixed charge compression ignition methanol combustion system using a flash boiling fuel injection technique increases the brake thermal efficiency, decreases CO and THC emissions, while maintaining low NOx emissions in the high load region.
Technical Paper

Regional Trade and Emission Gas in Asian Automobile Industry

2001-11-12
2001-01-3761
This paper is an attempt to estimate the traffic demand of private vehicles in the Philippines and Thailand toward 2030. Estimation of road traffic volume is one of the most important elements for determining fuel consumption and emission gas levels. The level of passenger car ownership is still low, but there has been a distinct shift toward passenger cars due to the lack of mass transport. In Asian countries, inspection and maintenance and emission standards are the most important policy measures. The projections of car stock are evaluated as the emissions of PM, CO and NOx by applying these policy measures in the case of Thailand.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

Modeling Study of Vehicle Emission Impacts on Air Quality - JCAP Air Quality Model Working Group Report

2003-05-19
2003-01-1864
Air Quality Modeling Working Group developed two models to evaluate effects of automobile emission reduction measures on air quality improvement: Urban Air Quality Simulation Model in which secondary aerosol formation processes have been incorporated, and Roadside Air Quality Simulation Model in which micro-scale traffic flow has been taken into consideration. Concretely, a model has been built up for estimating SPM concentration in ambient air in which high concentrated air pollutants have been contained during summer and winter. The model has been built up by using UAM (Urban Airshed Model) as base model, and the following modification has been made to the base model. First, ISSOROPIA (secondary inorganic aerosol equilibrium model) has been added to the base model, and a secondary organic aerosol formation/reaction model (SOA model) has been incorporated into the model.
Technical Paper

Methanol Lean Burn in an Auto-Ignition DI Engine

1998-02-23
980531
A new combustion system targeting a drastic decrease in NOx emission and a brake specific energy consumption equivalent to that of a DI diesel engine has been developed. In this new combustion system, a lean burn system using early injection was employed to reduce NOx emission and an auto-ignition DI engine system was employed to achieve the low energy consumption. Methanol was used as the fuel for reducing NOx emission. The objective of this study is to clarify the possibility of the system for the auto-ignition of a premixed lean mixture of methanol fuel. This study shows that the gas temperature at ignition, Tig, is the predominant factor affecting auto-ignition. Auto-ignition occurs when Tig exceeds approximately 1000K. The methanol lean burn system in an auto-ignition DI engine drastically decreased NOx emission with almost the same brake specific energy consumption as a diesel engine in the middle load region.
Technical Paper

Effects of Fuel Properties on the Performance of Advanced Diesel NOx Aftertreatment Devices

2006-10-16
2006-01-3443
In the Japan Clean Air Program II (JCAP II) Diesel WG, effects of fuel properties on the performance of two types of diesel NOx emission aftertreatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined. For a Urea-SCR system, the NOx emission reduction performance with and without an oxidation catalyst installed in front of the SCR catalyst at low exhaust gas temperature operation was compared. For an NSR catalyst system, the effect of fuel sulfur on both emissions and fuel economy during 50,000 km driving was examined. Furthermore, effects of other fuel properties such as distillation on exhaust emissions were investigated. The results show that sulfur is the influential factor for both devices. Namely, high NOx emission reduction performance of the Urea-SCR system with the oxidation catalyst at low exhaust gas temperature operation is influenced by sulfur.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

Impact of Oil-derived Sulfur and Phosphorus on Diesel NOx Storage Reduction Catalyst - JCAP II Oil WG Report

2006-10-16
2006-01-3312
Emission regulations for diesel-powered vehicles have been gradually tightening. Installation of after-treatment devices such as diesel particulate filters (DPF), NOx storage reduction (NSR) catalysts, and so on is indispensable to satisfy rigorous limits of particulate matter (PM) and nitrogen oxides (NOx). Japan Clean Air Program II Oil Working Group (JCAPII Oil WG) has been investigating the effect of engine oil on advanced diesel after-treatment devices. First of all, we researched the impact of oil-derived ash on continuous regeneration-type diesel particulate filter (CR-DPF), and already reported that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF [1]. In this paper, impact of oil-derived sulfur and phosphorus on NSR catalyst was investigated using a 4L direct injection common-rail diesel engine with turbo-intercooler. This engine equipped with NSR catalyst meets the Japanese new short-term emission regulations.
Technical Paper

Effects of Road Structure and Buffer Building on Reduction of Road Traffic Noise

1989-11-01
891304
In order to investigate the possibility of noise countermeasures taken on the road and in its surroundings an urban area exposed to high road traffic noise level was taken up as a model, and their effectiveness was estimated by a hybrid simulation method combining a scale model experiment technique and a computer simulation. The case studies of simulation were carried out in the case of improving the road structures, laying the noise barriers, constructing the noise-buffer buildings and so on. As a result, more than 20 dB (A) of road traffic noise reduction were obtained by a modification of the existing surface road to an elevated road.
Technical Paper

Development and Verification of a Computer Simulation Model of Motorcycle-to-Vehicle Collisions

1999-03-01
1999-01-0719
In order to establish a systematic approach to the study on the injuries sustained by motorcycle riders in accidents and the assessment of protective devices fitted to motorcycles, this research develops a computer simulation model of motorcycle-to-vehicle collision model based on multibody kinematics and dynamics using MADYMO (MAthematical DYnamic MOdel). The effectiveness of the motorcycle-to-vehicle crash model is verified using data of 14 full-scale tests. Comparisons between the simulation peak head acceleration results and the full-scale crash tests data demonstrate a satisfactory agreement between them. The simulation results along with the test data indicate that the leg protectors fitted to the motorcycle can induce harmful consequences to the rider head in some configurations, regardless of their aimed protective effects on the rider’s legs. The findings obtained in this study also provide basis for further improvement of the current model.
Technical Paper

Japan Clean Air Program (JCAP): Preliminary Modeling Study of Vehicle Emission Impacts on Air Quality

1999-05-03
1999-01-1482
Comparing with the previous Auto/Oil programs, the total plan and current status of the air quality modeling study in JCAP are presented. The total plan of air quality modeling study has the following characteristics: 1) Vehicle emission inventory program is developed by considering the original features of Japan. 2) Not only the urban air quality but also the road sides pollutants dispersion is evaluated. 3) The chemical reaction model for the secondary particulate formations is developed on the basis of the smog chamber experiments. 4) For the cost-effectiveness analysis of vehicle/fuel technologies, the output of the air quality modeling will be combined with the cost data of new vehicle emission reduction technologies As the first step, preliminary modeling studies are conducted to understand the overall tendency of the air quality change toward 2010 in Tokyo urban area.
Technical Paper

Development of Simulation Model and Pedestrian Dummy

1999-03-01
1999-01-0082
Honda has been studying ways of improving vehicle design to reduce the severity of pedestrian injury. Full-scale test using a pedestrian dummy is an important way to assess the aggressiveness of a vehicle to pedestrians. However, from test results it is concluded that current pedestrian dummies have stiffer characteristics than Post Mortem Human Subjects (PMHS). Also, the dummy kinematics during a collision is different from that of a human body. Because of the limitations of current dummies, it was decided to develop a new pedestrian dummy. At the first stage of the project, a computer simulation model that represented the PMHS tests was developed. Joint characteristics obtained from the simulation model were used in building a new pedestrian dummy which has been named Polar I. The advanced frontal crash test dummy, known as Thor, was selected as the base dummy. Modifications were made for the thorax, spine, knee etc.
X