Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Development and Characteristics of a Burner for Localized Fire Tests and an Evaluation of Those Fire Tests

2012-04-16
2012-01-0987
We have developed a new propane burner that satisfies the requirements of localized fire test which was presented in SAE technical paper 2011-01-0251. This paper introduces the specifications of this burner and reports its characteristics as determined from various fire exposure tests that we conducted in order to gather data. These tests included temperature and heat flux distribution on cylinder surfaces, which would be useful for the design of automotive compressed fuel cylinders. Our fire exposure tests included localized and engulfing fire tests to compare TPRD activation time, cylinder burst pressure and other parameters between different flame configurations and tests to identify the effects of an automotive compressed fuel cylinder on localized fire test results.
Technical Paper

Basic Characteristics of Motorcycle Riding Maneuvers of Expert Riders and Ordinary Riders

2014-11-11
2014-32-0025
ISO26262 was intended only for passenger cars but can be applied to motorcycles if the Controllability (C) is subjectively evaluated by expert riders. Expert riders evaluate motorcycle performance from the viewpoint of ordinary riders. However, riding maneuvers of ordinary riders have not been confirmed by objective data. For this reason, it is important to understand the basic characteristics of riding maneuvers of both expert and ordinary riders. This study seeks to confirm the compatibility between the riding maneuvers of expert riders and those of ordinary riders. The riding maneuvers and vehicle behavior of four expert riders and 16 ordinary riders were compared using the results of a test assuming normal running.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles

2005-10-24
2005-01-3708
In 1999, some Japanese fuel suppliers sold highly concentrated alcohol fuels, which are mixtures of gasoline and oxygenates, such as alcohol or ether, in amounts of 50% or more. In August 2001, it was reported that some vehicle models using the highly concentrated alcohol fuels encountered fuel leakage and vehicle fires due to corrosion of the aluminum used for the fuel-system parts. The Ministry of Economy, Trade and Industry (METI) and the Ministry of Land, Infrastructure and Transport Government of Japan (MLIT) jointly established the committee on safety for highly concentrated alcohol fuels in September 2001. The committee consisted of automotive technology and metal corrosion experts knowledgeable about preventing such accidents and ensuring user safety. Immersion tests were conducted on metals and other materials used for the fuel-supply system parts to determine the corrosion resistance to each alcohol component contained in the highly concentrated alcohol fuels.
Technical Paper

Diffusion and Ignition Behavior on the Assumption of Hydrogen Leakage from a Hydrogen-Fueled Vehicle

2007-04-16
2007-01-0428
hydrogen was leaked from the underfloor at a flow rate exceeding 131 NL/min (11.8 g/min), which is the allowable fuel leakage rate at the time of a collision of compressed hydrogen vehicles in Japan, and the resulting distribution of concentration in the engine compartment and the dispersion after stoppage of the leak were investigated. Furthermore, ignition tests were also conducted and the impact on the surroundings (mainly on human bodies) was investigated to verify the safety of the allowable leakage rate. The tests clarified that if hydrogen leaks from the underfloor at a flow rate of 1000 NL/min (89.9 g/min) and is ignited in the engine compartment, people around the vehicle will not be seriously injure. Therefore, it can be said that a flow rate of 131 NL/min (11.8 g/min), the allowable fuel leakage rate at the time of a collision of compressed hydrogen vehicles in Japan, assures a sufficient level of safety.
Technical Paper

Full-Width Test and Overload Test to Evaluate Compatibility

2005-04-11
2005-01-1373
Test procedures to assess vehicle compatibility were investigated based on a series of crash tests. Structural interaction and compartment strength are significant for compatibility, and full-width tests and overload tests have been proposed to assess these key factors. Full-width rigid and deformable barrier test results were compared with respect to force distributions, structural deformation and dummy responses. In full-width deformable tests, forces from structures can be clearly shown in barrier force distributions. The average height of force (AHOF) determined in full rigid and deformable barrier tests were similar. From car-to-car tests, it was demonstrated that stiffening the compartment of small cars is an effective and direct way to improve compatibility. To evaluate the compartment strength, five overload tests were carried out. The rebound force is proposed as a compartment strength criterion.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

MR20DD Motoring Fuel Economy Test for 0W-12 and 0W-8 Low Viscosity Engine Oil

2019-12-19
2019-01-2295
The SAE J300 classification was expanded to 0W-12 and 0W-8 viscosity grades in 2015, and lower viscosity engine oils have been studied in the industry. ILSAC GF-6B that will be introduced in 2020 will specify a 0W-16 requirement, but 0W-12 and 0W-8 grades are not considered. Because engine oil equal to or higher than the 0W-20 grade is recommended for almost all engines globally, suitable engine tests for 0W-12 and 0W-8 do not exist. Therefore, the Japan Automobile Manufacturers Association, Petroleum Association of Japan and Society of Automotive Engineers of Japan decided to establish new 0W-12 and 0W-8 low viscosity engine oil specifications. It is referred to as JASO GLV-1, and together with a new fuel economy engine test procedure, these engine oils for better fuel economy will be put on the Japanese market in 2019. Motoring friction torque tests are widely used to ascertain the friction reduction effect of fuel-economy engine oils.
X