Refine Your Search

Topic

Author

Search Results

Journal Article

Field Evaluation of Biodiesel (B20) Use by Transit Buses

2009-10-06
2009-01-2899
The objective of this research project was to compare B20 (20% biodiesel fuel) and ultra-low-sulfur (ULSD) diesel-fueled buses in terms of fuel economy, vehicle maintenance, engine performance, component wear, and lube oil performance. We examined 15 model year (MY) 2002 Gillig 40-foot transit buses equipped with MY 2002 Cummins ISM engines. The engines met 2004 U.S. emission standards and employed exhaust gas recirculation (EGR). For 18 months, eight of these buses operated exclusively on B20 and seven operated exclusively on ULSD. The B20 and ULSD study groups operated from different depots of the St. Louis (Missouri) Metro, with bus routes matched for duty cycle parity. The B20- and ULSD-fueled buses exhibited comparable fuel economy, reliability (as measured by miles between road calls), and total maintenance costs. Engine and fuel system maintenance costs were also the same for the two groups after correcting for the higher average mileage of the B20 group.
Journal Article

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

2009-06-15
2009-01-1790
Increasing interest in biofuels—specifically, biodiesel as a pathway to energy diversity and security—have necessitated the need for research on the performance and utilization of these fuels and fuel blends in current and future vehicle fleets. One critical research area is related to achieving a full understanding of the impact of biodiesel fuel blends on advanced emission control systems. In addition, the use of biodiesel fuel blends can degrade diesel engine oil performance and impact the oil drain interval requirements. There is limited information related to the impact of biodiesel fuel blends on oil dilution. This paper assesses the oil dilution impacts on an engine operating in conjunction with a diesel particle filter (DPF), oxides of nitrogen (NOx) storage, a selective catalytic reduction (SCR) emission control system, and a 20% biodiesel (soy-derived) fuel blend.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Journal Article

Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

2011-12-06
2011-01-2396
Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution.
Technical Paper

Effect of Biodiesel Blends on Urea Selective Catalytic Reduction Catalyst Performance with a Medium-Duty Engine

2008-10-06
2008-01-2484
Testing to investigate biodiesel's impact on the performance of a zeolite-based selective catalytic reduction (SCR) system was conducted. The tests employed a 2004 compliant Cummins ISB with common rail fuel injection, EGR, and variable geometry turbo. This 5.9L, 300HP engine was retrofitted with a Johnson-Matthey DPF + SCR (SCRT™) system. Testing was conducted over eight steady-state engine operating modes which provided a wide range of exhaust temperature and exhaust chemistry conditions. Fuels tested were a 2007 certification quality ultra-low sulfur diesel (ULSD), as well as a soy derived biodiesel in a B20 blend. B20 produced slightly lower catalyst temperatures and higher NO2:NOx ratios relative to ULSD, but no measureable difference in the overall NOx conversion over the SCR system. The dominant variable influencing SCR performance is the catalyst space velocity, which is unchanged with the use of B20.
Technical Paper

Evaluation of the Ignition Hazard Posed by Onboard Refueling Vapor Recovery Canisters

2001-03-05
2001-01-0731
ORVR (Onboard Refueling Vapor Recovery) canisters trap vapors during normal operations of a vehicle's engine, and during refueling. This study evaluates the relative risks involved should a canister rupture in a crash. A canister impactor was developed to simulate real-world impacts and to evaluate the canisters' rupture characteristics. Numerous performance aspects of canisters were evaluated: the energy required to rupture a canister; the spread of carbon particles following rupture; the ease of ignition of vapor-laden particles; the vapor concentration in the area of ruptured, vapor-laden canisters; and the potential of crashes to rupture and ignite canisters. Results from these five items were combined into a risk analysis.
Technical Paper

Development of the HyStEP Device

2016-04-05
2016-01-1190
With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device.
Technical Paper

Impact of Biodiesel Blends on Fuel System Component Durability

2006-10-16
2006-01-3279
An ultra-low sulfur diesel (ULSD) fuel was blended with three different biodiesel samples at 5 and 20 volume percent. The biodiesel fuels were derived from rapeseed and soybean oils, and in addition, a highly oxidized biodiesel was prepared from the soy biodiesel by oxidation under controlled conditions. A set of five elastomers commonly used in automotive fuel systems were examined before and after immersion in the six test blends and base fuel at 60°C for 1000 hours. The elastomers were evaluated for hardness, tensile strength, volume change and compression. Injector wear tests were also conducted on the base petrodiesel fuel and the biodiesel blends using a 500-hour test method developed for this study. Bosch VE (in-line) rotary pumps were evaluated for wear after testing for 500 hours on the base fuel, B5 and B20 test fuels. Additionally, a test procedure was developed to accelerate wear on common rail pumps over 500 hours.
Technical Paper

Spectroscopic Study of Biodiesel Degradation Pathways

2006-10-16
2006-01-3300
Oxidative degradation of biodiesel under accelerated conditions has been examined by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and gravimetric measurement of deposit formation. The formation of gums and deposits caused by oxidation in storage or in an engine fuel system is a significant issue because of the potential for fuel pump and injector fouling. The results of this study indicate several important pathways for degradation and two pathways leading to formation of oligomers and, ultimately, deposits. Peroxides formed in the initial stage of oxidation can decompose to form aldehydes, ketones, and acids. These can react further in aldol condensation to form oligomers. Additionally, peroxides can react with fatty acid chains to form dimers and higher oligomers. Deposits form when the polarity and molecular weight of these oligomers is high enough.
Technical Paper

Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

2018-04-03
2018-01-0218
Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25°C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 °C, as well as knock-limited load measurements across a range of IATs up to 90 °C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels’ knock resistance. The DI load sweeps at 50°C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Development of a Compression Ignition Heavy Duty Pilot-Ignited Natural Gas Fuelled Engine for Low NOx Emissions

2004-10-25
2004-01-2954
A heavy-duty compression ignition engine using EGR and pilot-ignited directly injected natural gas fueling was calibrated for low NOx emissions. A Cummins ISX engine using cooled EGR was fitted with a Westport HPDI™ fuel system and an oxidation catalyst. The base engine hardware was modified to increase EGR rates (up to 40%). The engine, rated at 336 kW (450 hp) and 2236Nm (1650 ft-lbs), was calibrated and tested over steady state and transient test cycles. Steady state testing over the ESC 13-mode test cycle resulted in weighted composite NOx emissions of 0.36 g/bhp-hr and particulate matter emissions of 0.04 g/bhp-hr. Transient testing over the US EPA specified FTP cycle resulted in average NOx emissions of 0.6 g/bhp-hr and PM emissions of 0.03 g/bhp-hr.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

2000-06-19
2000-01-2013
About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

Methylal and Methylal-Diesel Blended Fuels for Use in Compression-Ignition Engines

1999-05-03
1999-01-1508
“Gas-to-liquids” catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude-derived fuels. Methylal (CH3-O-CH2-O-CH3), also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins B5.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions.
Technical Paper

Alternative Fuel Vehicle Fleet Buyer's Guide

1999-05-03
1999-01-1510
Fleet managers need a tool to assist them in assessing their need to comply with EPAct and to provide them with the ability to obtain information that will allow them to make alternative fuel vehicle purchasing decisions. This paper will describe the Web-based tool that will inform a fleet manager, based on their geographic location, the type of fleet they own or operate, and the number and types of vehicles in their fleet, whether or not they need to meet the requirements of EPAct, and, if so, the percentage of new vehicle purchases needed to comply with the law. The tool provides detailed specifications on available OEM alternative fuel vehicles, including the purchase cost of the vehicles, fuel and fuel system characteristics, and incentives and rebates surrounding the purchase of each vehicle. The full set of federal, state, and local incentives is made available through the tool, as well as detailed access to refueling site and dealership locations.
X