Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

New Methodology for Transient Engine Rig Experiments for Efficient Parameter Tuning

2013-12-20
2013-01-9043
When performing catalyst modeling and parameter tuning it is desirable that the experimental data contain both transient and stationary points and can be generated over a short period of time. Here a method of creating such concentration transients for a full scale engine rig system is presented. The paper describes a valuable approach for changing the composition of engine exhaust gas going to a DOC (or potentially any other device) by conditioning the exhaust gas with an additional upstream DOC and/or SCR. By controlling the urea injection and the DOC bypass a wide range of exhaust compositions, not possible by only controlling the engine, could be achieved. This will improve the possibilities for parameter estimation for the modeling of the DOC.
Technical Paper

Thermally Stable Pt/Rh Catalysts

1997-10-01
972909
The increasing severity in emission standards around the world has been accompanied by the development of more active, durable catalysts. With a view to investigating the effects of high thermal aging on the catalyst performance and structure, the relationships of washcoat composition, washcoat structure, and PGM location with respect to catalyst activity were clarified using a model gas test, as well as physical and chemical characterization methods. The influence of newly developed washcoat components and PGM location on catalyst performance are also demonstrated by engine bench tests. The results obtained in this study indicate the newly developed Pt/Rh catalyst techologies are appropriate for future applications in which the catalyst will be exposed to extremely high temperature and flowrates.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Fuel Chemistry Impacts on Gasoline HCCI Combustion with Negative Valve Overlap and Direct Injection

2007-10-29
2007-01-4105
Homogeneous Charge Compression Ignition (HCCI) combustion has the potential to produce low NOx and low particulate matter (PM) emissions while providing high efficiency. In HCCI combustion, the start of auto-ignition of premixed fuel and air depends on temperature, pressure, concentration history during the compression stroke, and the unique reaction kinetics of the fuel/air mixture. For these reasons, the choice of fuel has a significant impact on both engine design and control strategies. In this paper, ten (10) gasoline-like testing fuels, statistically representative of blends of four blending streams that spanned the ranges of selected fuel properties, were tested in a single cylinder engine equipped with a hydraulic variable valve train (VVT) and gasoline direct injection (GDI) system.
Technical Paper

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

1998-02-23
980421
It has long been recognized that the key to achieving stringent emission standards such as ULEV is the control of cold-start hydrocarbons. This paper describes a new approach for achieving excellent cold-start hydrocarbon control. The most important component in the system is a catalyst that is highly active at ambient temperature for the exothermic CO oxidation reaction in an exhaust stream under net lean conditions. This catalyst has positive order kinetics with respect to CO for CO oxidation. Thus, as the concentration of CO in the exhaust is increased, the rate of this reaction is increased, resulting in a faster temperature rise over the catalyst.
Technical Paper

Diesel Fuel Desulfurization Filter

2007-04-16
2007-01-1428
The molecular filtration of sulfur components in ultra low sulfur diesel (ULSD) fuel is described. A comprehensive screening of potential sulfur removal chemistries has yielded a sorbent which has the capability to efficiently remove organo-sulfur components in ULSD fuel. This sorbent has been used to treat ULSD fuel on a heavy duty engine equipped with NOx adsorber after-treatment technology and has been shown to lengthen the time between desulfation steps for the NOx adsorber. The fuel properties, cetane number and aromatics content, etc., have not been changed by the removal of the sulfur in the fuel with the exception of the lubricity which is reduced.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Reduction of NOx in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part I: System and Decomposition Process

1998-10-19
982592
The SNR-technique is a new NOx aftertreatment system for lean burn gasoline and diesel applications. The objective of SNR is NOx removal from lean exhaust gas by NOx adsorption and subsequent selective external recirculation and decomposition of NOx in the combustion process. The SNR-project is composed of two major parts. Firstly the development of NOx adsorbents which are able to store large quantities of NOx in lean exhaust gas, and secondly the NOx decomposition by the combustion process. Emphasis of this paper is the investigation of NOx reduction in the combustion process, including experimental investigation and numerical simulation. The NOx decomposition process has been proven in diesel and lean-burn gasoline engines. Depending on the type of engine NOx-conversion rates up to 90 % have been observed. Regarding the complete SNR-system, including the efficiency of the adsorbing material and the NOx decomposition by the combustion, a NOx removal of more than 50% is achievable.
Technical Paper

Reduction of NOx in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part II: NOx Storage Materials

1998-10-19
982593
Selective NOx recirculation (SNR), involving adsorption, selective external recirculation and decomposition of the NOx by the combustion process, is itself a promising technique to abate NOx emissions. Three types of materials containing Ba: barium aluminate, barium tin perovskite and barium Y-zeolites have been developed to adsorb NOx under lean-burn or Diesel conditions, with or without the presence of S02. All these materials adsorb NO2 selectively (lean-burn conditions), and store it as nitrate/nitrite species. The desorption takes place by decomposition of these species at higher temperatures. Nitrate formation implies also sulfate formation in the presence of SO2 and SO3, while the NO2/SO2 competition governs the poisoning of such catalysts.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst System

2001-03-05
2001-01-0510
The aggressive reduction of future diesel engine NOx emission limits forces the heavy- and light-duty diesel engine manufacturers to develop means to comply with stringent legislation. As a result, different exhaust emission control technologies applicable to NOx have been the subject of many investigations. One of these systems is the NOx adsorber catalyst, which has shown high NOx conversion rates during previous investigations with acceptable fuel consumption penalties. In addition, the NOx adsorber catalyst does not require a secondary on-board reductant. However, the NOx adsorber catalyst also represents the most sulfur sensitive emissions control device currently under investigation for advanced NOx control. To remove the sulfur introduced into the system through the diesel fuel and stored on the catalyst sites during operation, specific regeneration strategies and boundary conditions were investigated and developed.
Technical Paper

Investigations into NOx Aftertreatment with Urea SCR for Light-Duty Diesel Vehicles

2001-09-24
2001-01-3624
Future US emissions limits are likely to mean a sophisticated nitrogen oxide (NOx) reduction technique is required for all vehicles with a diesel engine, which is likely to be either NOx trap or selective catalytic reduction (SCR) technology. To investigate the potential of SCR for NOx reduction on a light duty vehicle, a current model vehicle (EUII M1 calibration), of inertia weight 1810 kg, was equipped with an urea-based SCR injection system and non-vanadium, non-zeolitic SCR catalysts. To deal with carbon monoxide (CO), hydrocarbon (HC) and volatile organic fraction (VOF), a diesel oxidation catalyst was also incorporated into the system for most tests. Investigations into the effect of placing the oxidation catalyst at different positions in the system, changing the volume of the SCR catalysts, increasing system temperature through road load changes, varying the SCR catalyst composition, and changing the urea injection calibration are discussed.
Technical Paper

Vapor Pressures of Diesel Fuel Oxygenate Blends

2002-10-21
2002-01-2850
A gas chromatographic technique was used to determine the vapor pressures of blends of six candidate diesel fuel oxygenates with three diesel fuels at 0, 5, 10, 30, and 100 percent blend levels. Both the oxygenates and the diesel fuels were selected to represent a variety of chemical compositions. The vapor pressures were determined over a range of temperatures from -30 C to +30 C. In each case the fraction of the vapor pressure derived from the oxygenate and the fuel was identified. The vapor pressure results showed that there were significant deviations from ideality, leading to both higher and lower vapor pressures than would be predicted from Raoult's Law. These results are significant for fire safety and evaporative emissions as well as for a more basic understanding of the behavior of these blends. Data were also obtained on the heats of vaporization for each of the blends.
Technical Paper

Oxygenate Compatibility with Diesel Fuels

2002-10-21
2002-01-2848
Miscibility, water tolerance, cloud point, and flash point data are presented for seven candidate diesel fuel oxygenates: dipentyl ether, dibutoxymethane, 2-ethoxyethyl ether, diethyl maleate, tripropylene glycol monomethyl ether, dibutyl maleate, and glycerol tributrate. These oxygenates were blended with three different diesel fuels: an oil sands diesel, an ultra-low sulfur diesel, and a Fischer-Tropsch diesel. Blend levels included 0, 5, 10, 30, and 100 % oxygenate. Properties were measured at temperatures of -30, -15, 0, 15, and 30 C.
Technical Paper

Development of Advanced Three-Way Catalysts that Enable Low PGM Loadings for Future Mercosur Emissions Legislation

2002-11-19
2002-01-3551
This paper describes the development of new high performance three-way catalyst (TWC) formulations with improved activity and enhanced thermal stability. These new TWC formulations enable the converter to be fitted closer to the engine and allow this future legislation to be met with catalysts using PGM levels significantly lower than those currently being employed. The performance benefits of these advanced platinum- and palladium-based catalysts are demonstrated on a number of different vehicles after bench-engine ageing.
Technical Paper

FTP and US06 Performance of Advanced High Cell Density Metallic Substrates as a Function of Varying Air/Fuel Modulation

2003-03-03
2003-01-0819
The influence of catalyst volume, cell density and precious metal loading on the catalyst efficiency were investigated to design a low cost catalyst system. In a first experiment the specific loading was kept constant for a 500cpsi and a 900cpsi substrate. In a second experiment the palladium loading was reduced on the 900cpsi substrate and the same PM loading was applied to a 1200cpsi substrate with lower volume. Finally the loading was further reduced for the 1200cpsi substrate. The following parameters were studied after aging: Catalyst performance of standard cell density compared to high cell density technology Light-off performance and catalyst efficiency as a function of Palladium loading and substrate cell density Catalyst efficiency as a function of AFR biasing The performance of the aged catalysts was investigated in a lambda sweep test and in light-off tests at an engine bench.
Technical Paper

Impact of SCR Activity on Soot Regeneration and the Converse Effects of Soot Regeneration on SCR Activity on a Vanadia-SCRF®

2018-04-03
2018-01-0962
The influence of SCR (selective catalytic reduction) activity on soot regeneration was investigated using engine test measurements with and without urea dosing on a vanadia-SCRF®1, also known as a vanadia SCR coated diesel particulate filter (V.SCR-DPF). The extent and rate of passive soot regeneration is significantly reduced in the presence of SCR activity especially at high temperatures (>250 °C). The reduction in soot regeneration is because some of the NO2, which would otherwise react with the soot, is consumed by SCR reactions and consequently the rate of soot regeneration is lower when urea is dosed. The converse effects of soot oxidation on SCR activity were studied separately by analysing steady-state light-off engine measurements with different initial soot loadings on the V.SCR-DPF. The measurements show an increase in NOX conversion with increasing soot loading.
Technical Paper

Effect of a Continuously Regenerating Diesel Particulate Filter on Non-Regulated Emissions and Particle Size Distribution

1998-02-23
980189
The reduction of particulate emissions from diesel engines is one of the most challenging problems associated with exhaust pollution control, second only to the control of NOx from any “lean burn” application. Particulate emissions can be controlled by adjustments to the combustion parameters of a diesel engine but these measures normally result in increased emissions of oxides of nitrogen. Diesel particulate filters (DPFs) hold out the prospect of substantially reducing regulated particulate emissions and the task of actually removing the particles from the exhaust gas has been solved by the development of effective filtration materials. The question of the reliable regeneration of these filters in situ, however, remains a difficult hurdle. Many of the solutions proposed to date suffer from high engineering complexity and/or high energy demand. In addition some have special disadvantages under certain operating conditions.
Technical Paper

A One-Dimensional Model for Square and Octo-Square Asymmetric Particulate Filters with Correct Description of the Channel and Wall Geometry

2018-04-03
2018-01-0951
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater capacity for ash. Somewhat surprisingly, very few models for asymmetric PFs have been published and none of these gives a correct/detailed description of the geometry. For example, octahedral channels may be treated as if they were square or the tapering walls between the inlet and outlet channels treated as if they were rectangular in cross section. Alternatively, the equations may be presented in generic form in terms of channel cross-sectional areas and perimeters, but without giving any indication of how to calculate these. This paper aims to address these deficiencies with a model that correctly describes the geometry of square and octo-square asymmetric PFs. Expressions for the solid fraction of the PF (which affects thermal mass) and channel cross section and perimeter (both when clean and soot/ash loaded) are presented.
X