Refine Your Search

Topic

Affiliation

Search Results

Video

Development of Hybrid System for Mid-Size Sedan

2011-11-07
Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs.
Journal Article

Managing System Design Process Using Axiomatic Design: A Case on KAIST Mobile Harbor Project

2010-04-12
2010-01-0278
As world-wide container volume increases and very large container ships emerge as a dominant player in the maritime cargo transport market, functional capabilities of container ports need to be greatly enhanced. To address this problem, KAIST is undertaking a project to design a novel container transport system, namely Mobile Harbor. Mobile Harbor refers to a system that can go out to a large container ship anchoring in the open sea, load and unload containers between the container ship and the Mobile Harbor, and transport them to their destinations. Designing Mobile Harbor presents a number of challenges as with many other large-scale engineering projects, especially at the beginning stage of the project.
Journal Article

Improvement of Virtual Vehicle Analysis Efficiency with Optimal Modes Selection in Flexible Multi-Body Dynamics

2013-04-08
2013-01-1193
In the analysis for durability or R&H performance with the full vehicle multibody models, the need for component flexibility is increasing along with demand for more precise full vehicle system. The component elastic deformations are usually expressed by modal superposition from component normal mode analysis with finite element model for reducing model size and simulation time. Although the simulation results of MBD analysis are more accurate according to increasing the number of flexible body and modes, the increasing of flexible components makes worse simulation time and convergence in MBD analysis. Especially, in the MBD analysis including a flexible upper body, in substitution for large number degree of freedom FE model such as trimmed body, it should take a few times longer than the case of rigid upper body This paper proposes the methods of reducing computational cost with adequate mode selections without the loss of simulation accuracy in the flexible MBD.
Journal Article

Robust Feedback Tracking Controller Design for Self-Energizing Clutch Actuator of Automated Manual Transmission

2013-10-14
2013-01-2587
This study mainly focuses on developing an accurate tracking controller for the self-energizing clutch actuator (SECA) system consisting of a DC motor with an encoder applied on the automated manual transmission (AMT). In the position-based actuation of the SECA, abruptly increasing torque near the clutch kissing point during the clutch engagement process induces control input saturation and jerky response when a conventional feedback controller is applied. The proposed work resolves such issue and significantly increases the control accuracy of the actuator through the development of an effective H-infinity controller. The control performance is shown to be more effective than a simple PID controller via simulation and experiments using an AMT test bench equipped with SECA aided by d-SPACE and Matlab/Simulink.
Journal Article

A Study on How to Utilize Hilly Road Information in Equivalent Consumption Minimization Strategy of FCHEVs

2014-04-01
2014-01-1827
This paper presents an adaptation method of equivalent factor in equivalent consumption minimization strategy (ECMS) of fuel cell hybrid electric vehicle (FCHEV) using hilly road information. Instantaneous optimization approach such as ECMS is one of real-time controllers. Furthermore, it is widely accepted that ECMS achieves near-optimum results with the selection of the appropriate equivalent factor. However, a lack of hilly road information no longer guarantees near-optimum results as well as charge-sustaining of ECMS under hilly road conditions. In this paper, first, an optimal control problem is formulated to derive ECMS analytical solution based on simplified models. Then, we proposed updating method of equivalent factor based on sensitivity analysis. The proposed method tries to mimic the globally optimal equivalent factor trajectory extracted from dynamic programming solutions.
Journal Article

Evaluation of Trim Absorption to Exterior Dynamic and Acoustic Excitations Using a Hybrid Physical-Modal Approach

2014-06-30
2014-01-2080
The NVH study of trimmed vehicle body is essential in improving the passenger comfort and optimizing the vehicle weight. Efficient modal finite-element approaches are widely used in the automotive industry for investigating the frequency response of large vibro-acoustic systems involving a body structure coupled to an acoustic cavity. In order to accurately account for the localized and frequency-dependant damping mechanism of the trim components, a direct physical approach is however preferred. Thus, a hybrid modal-physical approach combines both efficiency and accuracy for large trimmed body analysis. Dynamic loads and exterior acoustic loads can then be applied on the trimmed body model in order to evaluate the transfer functions between these loads and the acoustic response in the car compartment.
Journal Article

FE Simulation of the Transmission Loss Performance of Vehicle Acoustic Components at Low and Medium Frequencies

2014-06-30
2014-01-2081
The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment.
Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Technical Paper

Appropriate Damping Loss Factor of Vehicle Interior Cavity for Valid Application of Statistical Energy Analysis

2020-09-30
2020-01-1524
It is known that SEA is a rapid and simple methodology for analyzing complex vibroacoustic systems. However, the SEA principle is not always valid and one has to be careful about the physical conditions at which the SEA principle is acceptable. In this study, the appropriate damping loss factor of the vehicle interior cavity is studied in the viewpoint of the modal overlap factor of the cavity and the decay per mean free path (DMFP) of the cavity. Virtual SEA tests are performed with an FE model combination, which is suggested by a previous study of Stelzer et al. for the simulation of the sound transmission loss (STL) of vehicle panel structure. The FE model combination is consisting of the body in white (BIW), an acoustical-excited hemisphere-shaped exterior cavity, and the interior cavity. It is found that the DMFP of the interior cavity is appropriate between 0.5 ~ 1 dB for applying SEA principle.
Technical Paper

Engine Sound Reduction and Enhancement Using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

A Diagnostic Technology of Powertrain Parts that Cause Abnormal Noises Using Artificial Intelligence

2020-09-30
2020-01-1565
In general, when a problem occurs in a component of powertrains, various phenomena appear, and abnormal noise is one of them. The service mechanics diagnose the noise through analysis by using their ears and equipment. However, depending on their experiences, analysis time and diagnostic accuracy vary greatly. To shorten the analysis time and improve the diagnostic accuracy, we have developed a technology to diagnose powertrain parts that cause abnormal noises. To create the best deep learning model for our diagnosis, we tried to collect many abnormal noises from various parts. The collected noise data was measured under idle and various operating conditions from our vehicles and test cells. This noise data is abnormal noises generated from engines, transmissions, drive system and PE (Power Electric) parts of eco-friendly vehicles. From the collected data, we distinguished good and bad data through detailed analysis in time and frequency domain.
Technical Paper

Modeling and Parameter Estimation of Automatic Transmission for Heavy-Duty Vehicle Using Dual Clutch Scheme

2020-09-15
2020-01-2242
This paper focuses on modeling of the heavy-duty vehicle drivetrain with automatic transmission by using dual clutch scheme. The planetary gear set in the automatic transmission is complicated structure and difficult to understand. The advantage of the dual clutch scheme is that it can be used to represent the complex planetary gear set intuitively, which is a great help to understand the gear shifting process. It is also suitable for being used in the controller due to its low order. Some conditions are required to convert the planetary gear set to the dual clutch model. The heavy-duty vehicle driveline can be converted to the dual clutch model due to its heavy engine and vehicle inertia. This paper also proposes system parameter estimation methods to represent the driveline model. The main parameters are lumped inertia, lumped gear efficiency, output shaft compliance and friction coefficient of clutches.
Technical Paper

Slip Speed and Drive Torque Planning of Multivariable Controller for an Electrified Vehicle with Dual Clutch Transmission

2020-09-15
2020-01-2243
Demand for electrified vehicles is increasing due to increased environmental pollution regulations and interest in highly efficient vehicles. According to these demands, research on electrified vehicles equipped with Dual Clutch Transmission (DCT) has been actively conducted for the purpose of improving energy efficiency of electrified powertrain, maximizing acceleration performance, and increasing maximum speed. However, since DCT requires clutch to clutch shifting, it is difficult to control drive torque and slip speed using two clutch actuators and a power source input. In order to solve this, a study on a multivariable shift controller has been conducted. However, this study chose a heuristic planning method to control the two outputs. However, since the slip speed and drive torque are coupled, it is necessary to tune the reference for every shift scenario, as well as create unnecessary control inputs or degrade shift control performance.
Journal Article

A Tire Slip-Angle based Speed Control Driver Model for Analysis of Vehicle-Driver Systems at Limit Handling

2015-04-14
2015-01-1566
This paper presents a tire slip-angle based speed control race driver model. In developing a chassis control system for enhancement of high-speed driving performance, analysis of the vehicle-driver interaction at limit handling is one of the main research issues. Thus, a driver model which represents driving characteristics in a racing situation is required to develop a chassis control system. Since a race driver drives a vehicle as fast as possible on a given racing line without losing control, the proposed driver model is developed to ensure a lateral stability. In racing situation, one of the reasons which cause the lateral instabilities is an excessive corner-entry speed. The lateral instability in that moment is hard to handle with only a steering control. To guarantee the lateral stability of the vehicle while maximizing a cornering speed, a desired speed is determined to retain a tire slip-angle that maximizes lateral tire forces without front tire saturation.
Journal Article

Development of Personalized Engine Sound System using Active Sound Design Technology

2015-06-15
2015-01-2216
An important trend among vehicle NVH engineers is the production of attractive engine acceleration sound quality for the enhancement of a vehicle's image and performance. In addition, customers have increasing interest and enjoyment in customizing their cars to reflect their personal taste and preferences. The PESS (Personalized Engine Sound System) has been developed for making a unique and individually customizable vehicle concept. The system allows the customers an opportunity to create a variety of engine sounds in a single vehicle using active sound design technology. In this system, three different engine sound concepts are pre-defined, Dynamic, Sporty, and Extreme. Each of the engine sounds can then be adjusted with parameters that determine the timbre, such as main order, rumble, and high order. In addition, the pedal position during acceleration has also been used as a parameter to further personalize the experience.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Journal Article

A Study of Wheel Guards for Reduction of High Frequency Road-Noise

2015-04-14
2015-01-1309
This Study describes about the development of new concept' rear wheel guards for the reduction of Road Noise in the passenger vehicles. The new wheel guards are proposed by various frequency chamber concept and different textile layers concept. Two wheel guards were verified by small cabin resonance and vehicle tests. Through new developing process without vehicle test, Result of road noise will be expected if this concepts and materials of wheel guard are applied into automotive vehicle. As this concept consider tire radiation noise frequency and multilayers sound control multilayers, 2 concepts reduced road noise from 0.5 to 1.0dB. The proposed method of part reverberant absorption is similar to results of vehicle tests by part absorption index. Furthermore, optimization of frequency band in wheel guards will reduce more 0.5 dB noises. As a result of the application of Aimed Helmholtz and Multilayers concept, this paper classifies reduction of the road noise, cost and weights.
Journal Article

A Development of Energy Management System with Semi-Transparent Solar Roof and Off-Cycle Credit Test Methodology for Solar Power Assisted Automobile.

2017-03-28
2017-01-0388
CO2 emission is more serious in recent years and automobile manufacturers are interested in developing technologies to reduce CO2 emissions. Among various environmental-technologies, the use of solar roof as an electric energy source has been studied extensively. For example, in order to reduce the cabin ambient temperature, automotive manufacturers offer the option of mounting a solar cell on the roof of the vehicle [1]. In this paper, we introduce the semi-transparent solar cell mounted on a curved roof glass and we propose a solar energy management system to efficiently integrate the electricity generated from the solar roof into internal combustion engine (ICE) vehicles. In order to achieve a high efficiency solar system in different driving, we improve the usable power other than peak power of solar roof. Peak power or rated power is measured power (W) in standard test condition (@ 25°C, light intensity of 1000W/m2(=1Sun)).
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
X